Advertisement

Effects of β-nucleating agent and graphene oxide on the crystallization and polymorphic composition of isotactic polypropylene / graphene oxide composites for bridge pavement

  • Yang Bo
  • He Zhaoyi
  • Li Lu
  • Sheng Xingyue
  • Hao Zengheng
ORIGINAL PAPER
  • 2 Downloads

Abstract

To control the polymorphic and crystallization behavior of β-nucleated isotactic polypropylene / graphene oxide (β-iPP/GO) composites for bridge pavement, the roles of β-nucleating agent (β-NA) concentration and GO content in the polymorphic crystallization behavior, morphology and crystallization kinetics were studied by means of differential scanning calorimentry (DSC), wide-angle X-ray diffraction (WAXD), scanning electronic microscopy (SEM). Results revealed that with the increase of β-NA concentration, the crystallization temperature, the percentage of β-phase βc and relative degree of crystallinity Xc increased evidently. Moreover, the crystallite sizes decreased, and the crystallization activation energy △E decreased, reflecting the strong nucleation effect of the β-NA to the composites; On the other hand, as the GO content increased, the crystallization temperatures and relative degree of crystallinity Xc also increased slightly. Interestingly, GO exhibited strong α-nucleation effect, which was not favorable for formation of β-phase. When the GO content was 2.0 wt%, unusual small banding patterned crystals were observed. In general, to control the polymorphic behavior and morphology of the β-iPP/GO composites, both β-NA concentration and GO content were very important factors.

Keywords

Graphene oxide Isotactic polypropylene β-Nucleation agent Polymorphic behavior Bridge pavement 

Notes

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (51702282), and the Key industry technology innovation projects of Chongqing (CSTC2017zdcy-zdyf0297) for the financial support.

References

  1. 1.
    Chen L (1995) Comparative toughness testing of Fiber reinforced concrete. Special Publication 155:41–76Google Scholar
  2. 2.
    Hesami S, Salehi Hikouei I, Emadi SAA (2016) Mechanical behavior of self-compacting concrete pavements incorporating recycled tire rubber crumb and reinforced with polypropylene fiber. J Clean Prod 133:228–234CrossRefGoogle Scholar
  3. 3.
    Zhang HG, Wang XS, Hao PW (2012) Study on the performance of polypropylene Fiber concrete. Appl Mech Mater 174-177:91–96CrossRefGoogle Scholar
  4. 4.
    Gao S-L, Mäder E (2002) Characterisation of interphase nanoscale property variations in glass fibre reinforced polypropylene and epoxy resin composites. Compos A: Appl Sci Manuf 33(4):559–576CrossRefGoogle Scholar
  5. 5.
    Toutanji HA (1999) Properties of polypropylene fiber reinforced silica fume expansive-cement concrete. Constr Build Mater 13(4):171–177CrossRefGoogle Scholar
  6. 6.
    Hao Z, Li L, Liao X, Sheng X, Zhang Y (2018) Preparation and toughening performance investigation of epoxy resins containing carbon nanotubes modified with hyperbranched polyester. Polym Bull 75(3):1013–1026CrossRefGoogle Scholar
  7. 7.
    Shuan-fa C, Deng-liang Z, Jie Z, Feng L (2001) The study of the road performance of the polypropylene fiber concrete. Northeast Highway 24(2):23–25Google Scholar
  8. 8.
    Kang J, Yang F, Wu T, Li H, Liu D, Cao Y, Xiang M (2012) Investigation of the stereodefect distribution and conformational behavior of isotactic polypropylene polymerized with different Ziegler–Natta catalysts. J Appl Polym Sci 125(4):3076–3083CrossRefGoogle Scholar
  9. 9.
    Kang J, Yang F, Wu T, Li H, Cao Y, Xiang M (2012) Polymerization control and fast characterization of the stereo-defect distribution of heterogeneous Ziegler–Natta isotactic polypropylene. Eur Polym J 48(2):425–434CrossRefGoogle Scholar
  10. 10.
    Kang J, Cao Y, Li H, Li J, Chen S, Yang F, Xiang M (2012) Influence of the stereo-defect distribution on the crystallization behavior of Ziegler-Natta isotactic polypropylene. J Polym Res 19(12):1–11CrossRefGoogle Scholar
  11. 11.
    Han W, Liao X, Yang Q, Li G, He B, Zhu W, Hao Z (2017) Crystallization and morphological transition of poly(l-lactide)–poly(ε-caprolactone) diblock copolymers with different block length ratios. RSC Adv 7(36):22515–22523CrossRefGoogle Scholar
  12. 12.
    Hao Z, Tan Y, Zhang X, Zhang F (2009) Epithermal ageing mechanism of gussasphalt. Journal of Wuhan University of Technology-Mater Sci Ed 24(3):466–470CrossRefGoogle Scholar
  13. 13.
    Zeng F, Chen J, Yang F, Kang J, Cao Y, Xiang M (2018) Effects of polypropylene orientation on mechanical and heat seal properties of polymer-aluminum-polymer composite films for pouch lithium-ion batteries. Materials 11(1):144CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Chae H-R, Lee J, Lee C-H, Kim I-C, Park P-K (2015) Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance. J Membr Sci 483:128–135CrossRefGoogle Scholar
  15. 15.
    Wang J, Xu R, Yang F, Kang J, Cao Y, Xiang M (2018) Probing influences of support layer on the morphology of polyamide selective layer of thin film composite membrane. J Membr Sci 556:374–383CrossRefGoogle Scholar
  16. 16.
    Zhang S, Liu P, Zhao X, Xu J (2018) Enhanced tensile strength and initial modulus of poly(vinyl alcohol)/graphene oxide composite fibers via blending poly(vinyl alcohol) with poly(vinyl alcohol)-grafted graphene oxide. J Polym Res 25(3):65CrossRefGoogle Scholar
  17. 17.
    Ahmadian-Alam L, Teymoori M, Mahdavi H (2017) Graphene oxide-anchored reactive sulfonated copolymer via simple one pot condensation polymerization: proton-conducting solid electrolytes. J Polym Res 25(1):13CrossRefGoogle Scholar
  18. 18.
    Konwer S, Begum A, Bordoloi S, Boruah R (2017) Expanded graphene-oxide encapsulated polyaniline composites as sensing material for volatile organic compounds. J Polym Res 24(3):37CrossRefGoogle Scholar
  19. 19.
    Msomi PF, Nonjola P, Ndungu PG, Ramontja J (2018) Quaternized poly (2.6 dimethyl – 1.4 phenylene oxide)/Polysulfone anion exchange membrane reinforced with graphene oxide for methanol alkaline fuel cell application. J Polym Res 25(6):143CrossRefGoogle Scholar
  20. 20.
    Bao R-Y, Cao J, Liu Z-Y, Yang W, Xie B-H, Yang M-B (2014) Towards balanced strength and toughness improvement of isotactic polypropylene nanocomposites by surface functionalized graphene oxide. J Mater Chem A 2(9):3190–3199CrossRefGoogle Scholar
  21. 21.
    Kmetty Á, Bárány T, Karger-Kocsis J (2012) Injection moulded all-polypropylene composites composed of polypropylene fibre and polypropylene based thermoplastic elastomer. Compos Sci Technol 73:72–80CrossRefGoogle Scholar
  22. 22.
    Karger-Kocsis J, Wanjale SD, Abraham T, Bárány T, Apostolov AA (2010) Preparation and characterization of polypropylene homocomposites: exploiting polymorphism of PP homopolymer. J Appl Polym Sci 115(2):684–691CrossRefGoogle Scholar
  23. 23.
    Yansong, Y.; Fangxinyu, Z.; Jinyao, C.; Jian, K.; Feng, Y.; Ya, C.; Ming, X., Regulating polycrystalline behavior of the β-nucleated isotactic polypropylene/graphene oxide composites by melt memory effect. Polymer Composites 2018,  https://doi.org/10.1002/pc.24745
  24. 24.
    Yansong, Y.; Fangxinyu, Z.; Jinyao, C.; Jian, K.; Feng, Y.; Ya, C.; Ming, X., Isothermal Crystallization Kinetics and Subsequent Melting Behavior of β-Nucleated Isotactic Polypropylene / Graphene Oxide Composites with Different Ordered Structure. Polymer International 2018,  https://doi.org/10.1002/pi.5625
  25. 25.
    Xiong B, Chen R, Zeng F, Kang J, Men Y (2018) Thermal shrinkage and microscopic shutdown mechanism of polypropylene separator for lithium-ion battery: in-situ ultra-small angle X-ray scattering study. J Membr Sci 545:213–220CrossRefGoogle Scholar
  26. 26.
    Qiyan Z, Hongmei P, Jian K, Ya C, Ming X (2017) Effects of melt structure on non-isothermal crystallization behavior of isotactic polypropylene nucleated with α/β compounded nucleating agents. Polym Eng Sci 57(9):989–997CrossRefGoogle Scholar
  27. 27.
    Kang J, Chen J, Cao Y, Li H (2010) Effects of ultrasound on the conformation and crystallization behavior of isotactic polypropylene and [beta]-isotactic polypropylene. Polymer 51(1):249–256CrossRefGoogle Scholar
  28. 28.
    Varga J (2002) β-Modification of isotactic polypropylene: preparation, structure, processing, properties, and application. Journal of Macromolecular Science, Part B 41(4):1121–1171CrossRefGoogle Scholar
  29. 29.
    Dou Q, Meng M-R, Li L (2010) Effect of pimelic acid treatment on the crystallization, morphology, and mechanical properties of isotactic polypropylene/mica composites. Polym Compos 31(9):1572–1584CrossRefGoogle Scholar
  30. 30.
    Meng M-R, Dou Q (2008) Effect of pimelic acid on the crystallization, morphology and mechanical properties of polypropylene/wollastonite composites. Mater Sci Eng A 492(1–2):177–184CrossRefGoogle Scholar
  31. 31.
    Dou Q (2008) Effect of the composition ratio of pimelic acid/calcium stearate bicomponent nucleator and crystallization temperature on the production of β crystal form in isotactic polypropylene. J Appl Polym Sci 107(2):958–965CrossRefGoogle Scholar
  32. 32.
    Trongtorsak K, Supaphol P, Tantayanon S (2004) Effect of calcium stearate and pimelic acid addition on mechanical properties of heterophasic isotactic polypropylene/ethylene–propylene rubber blend. Polym Test 23(5):533–539CrossRefGoogle Scholar
  33. 33.
    Li JX, C WL (1997) Pimelic acid-based nucleating agents for hexagonal crystalline polypropylene. Journal of Vinyl & Additive Technology 3(2):151–156CrossRefGoogle Scholar
  34. 34.
    van der Meer DW (2015). J V, G J Vancso, The influence of chain defects on the crystallisation behaviour of isotactic polypropylene eXPRESS Polymer Letters 9(3):233–254Google Scholar
  35. 35.
    Kang J, He J, Chen Z, Yang F, Chen J, Cao Y, Xiang M (2015) Effects of β-nucleating agent and crystallization conditions on the crystallization behavior and polymorphic composition of isotactic polypropylene/multi-walled carbon nanotubes composites. Polym Adv Technol 26(1):32–40CrossRefGoogle Scholar
  36. 36.
    Kang J, Chen Z, Chen J, Yang F, Weng G, Cao Y, Xiang M (2015) Crystallization and melting behaviors of the ß-nucleated isotactic polypropylene with different melt structures – the role of molecular weight. Thermochim Acta 599:42–51Google Scholar
  37. 37.
    Kang J, Yang F, Chen J, Cao Y, Xiang M (2017) Influences of molecular weight on the non-isothermal crystallization and melting behavior of β-nucleated isotactic polypropylene with different melt structures. Polym Bull 74(5):1461–1482CrossRefGoogle Scholar
  38. 38.
    Zhang Q, Chen Z, Wang B, Chen J, Yang F, Kang J, Cao Y, Xiang M, Li H (2015) Effects of melt structure on crystallization behavior of isotactic polypropylene nucleated with α/β compounded nucleating agents. J Appl Polym Sci 132(4):41355CrossRefGoogle Scholar
  39. 39.
    Wu T, Xiang M, Cao Y, Kang J, Yang F (2014) Influence of lamellar structure on double yield behavior and pore size distribution in β nucleated polypropylene stretched membranes. RSC Adv 4(81):43012–43023CrossRefGoogle Scholar
  40. 40.
    Wu T, Xiang M, Cao Y, Kang J, Yang F (2014) Pore formation mechanism of β nucleated polypropylene stretched membranes. RSC Adv 4(69):36689–36701CrossRefGoogle Scholar
  41. 41.
    Jian Kang ZC, Yang F, Chen J, Ya C, Weng G, Xiang M (2015) Understanding the effects of nucleating agent concentration on the polymorphic behavior of β-nucleated isotactic polypropylene with different melt structures. Colloid Polym SciGoogle Scholar
  42. 42.
    Jian Kang JH (2015) Zhengfang Chen, Huiyang Yu, Jinyao Chen, Feng Yang, Ya Cao, Ming Xiang, investigation on the crystallization behavior and polymorphic composition of isotactic polypropylene / multi-walled carbon nanotubes composites nucleated with β-nucleating agent - the role of melt structures. J Therm Anal Calorim 119(3):1769–1780CrossRefGoogle Scholar
  43. 43.
    Yamamoto Y, Inoue Y, Onai T, Doshu C, Takahashi H, Uehara H (2007) Deconvolution analyses of differential scanning calorimetry profiles of β-crystallized polypropylenes with synchronized X-ray measurements. Macromolecules 40(8):2745–2750CrossRefGoogle Scholar
  44. 44.
    Peng H, Wang B, Gai J, Chen J, Yang F, Cao Y, Li H, Kang J, Xiang M (2014) Investigation on the morphology and tensile behavior of β-nucleated isotactic polypropylene with different stereo-defect distribution. J Appl Polym Sci 131(6):40027CrossRefGoogle Scholar
  45. 45.
    Kang J, Peng H, Wang B, Chen J, Yang F, Cao Y, Li H, Xiang M Investigation on the self-nucleation behavior of controlled-rheology polypropylene. Journal of Macromolecular Science, Part B 2014, 54(2):127–142Google Scholar
  46. 46.
    Jian Kang GW (2015) Jinyao Chen, Feng Yang, Ya Cao, Ming Xiang. Influences of pre-ordered melt structures on the crystallization behavior and polymorphic composition of β-nucleated isotactic polypropylene with different stereo-defect distribution Journal of Applied Polymer Science 132:42632Google Scholar
  47. 47.
    Peng H, Wang B, Gai J, Chen J, Yang F, Cao Y, Li H, Kang J, Xiang M (2014) Morphology and mechanical behavior of isotactic polypropylene with different stereo-defect distribution in injection molding. Polym Adv Technol 25(12):1464–1470CrossRefGoogle Scholar
  48. 48.
    Chen Z, Kang W, Kang J, Chen J, Yang F, Cao Y, Xiang M (2015) Non-isothermal crystallization behavior and melting behavior of Ziegler–Natta isotactic polypropylene with different stereo-defect distribution nucleated with bi-component β-nucleation agent. Polym Bull 72(12):3283–3303CrossRefGoogle Scholar
  49. 49.
    Kang J, Chen Z, Zhou T, Yang F, Chen J, Cao Y, Xiang M (2014) Dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene with different melt structures. J Polym Res 21(4):1–12CrossRefGoogle Scholar
  50. 50.
    Kang J, Gai J, Li J, Chen S, Peng H, Wang B, Cao Y, Li H, Chen J, Yang F, Xiang M (2013) Dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene polymerized with different Ziegler-Natta catalysts. J Polym Res 20(70):1–11Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Civil EngineeringChongqing Jiaotong UniversityChongqingChina
  2. 2.Chongqing Zhixiang Paving Technology Engineering Co., Ltd.ChongqingChina

Personalised recommendations