Journal of Polymer Research

, 25:201 | Cite as

A wrapped nano-flame retardant composed of carbon nanotubes and phosphorus-nitrogen containing polymer: synthesis, properties and flame-retardant mechanism

  • Fei XinEmail author
  • Congcong Zhai
  • Chao Guo
  • Yu Chen
  • Lijun QianEmail author
  • Xudong Chen


A nano-flame retardant (PCP-CNT) with the phosphorus-nitrogen containing polymer (PCP) wrapped nanotubes (CNTs) was produced via strong π-π stacking interactions between the walls of CNTs and PCP polymerized with hexachlorocyclotriphosphazene (HCCP) and p-phenylenediamine (p-PDA). The structures and properties of PCP-CNT were characterized by infrared absorption spectrum (FTIR), solid 1H nuclear magnetic resonance spectroscopy (1H NMR), transmission electron microscopy (TEM) and thermal gravimetric analysis tests (TGA). The flame retardancy of the flame-retardant polybutylene terephthalate (FR-PBT) was studied via limited oxygen index (LOI) and cone calorimeter (CONE) tests. The pk-HRR of FR-PBT was significantly reduced by 59.8 and 69.4% with the addition of 10 and 15% PCP-CNT, respectively. In addition, the thermal degradation mechanism of the pristine PBT and FR-PBT were discussed by using Ozawa method.


Flame retardant Wrapped nano-structure Carbon nanotubes Polybutylene terephthalate Flame-retardant mechanism 



The work was supported by the National Natural Science Foundation of China (No.51403007).


  1. 1.
    Beyer G (2002) Short communication: Carbon nanotubes as flame retardants for polymers. Fire and Materials 26:291CrossRefGoogle Scholar
  2. 2.
    Deborah M, Jawahar A, Mathavan T, Dhas MK, Benial AM (2015) Spectroscopic studies on sidewall carboxylic acid functionalization of multi-walled carbon nanotubes with valine. Spectrochim Acta A Mol Biomol Spectrosc 139:138CrossRefPubMedGoogle Scholar
  3. 3.
    Li X, Du Z, Zhang C, Li H, Zou W (2013) Preparation of polyaniline grafted multiwalled carbon nanotubes and conductive application in polyetherimide. Polym Adv Technol 24:151CrossRefGoogle Scholar
  4. 4.
    He Q, Yuan T, Yan X, Ding D, Wang Q et al (2014) Flame-Retardant Polypropylene/Multiwall Carbon Nanotube Nanocomposites: Effects of Surface Functionalization and Surfactant Molecular Weight. Macromol Chem Phys 215:327CrossRefGoogle Scholar
  5. 5.
    Song PA, Xu L, Guo Z, Zhang Y, Fang Z (2008) Flame-retardant-wrapped carbon nanotubes for simultaneously improving the flame retardancy and mechanical properties of polypropylene. J Mater Chem 18:5083CrossRefGoogle Scholar
  6. 6.
    Ansón-Casaos A, Pascual FJ, Ruano C, Fernández-Huerta N, Fernández-Pato I et al (2015) Electrical conductivity and tensile properties of block-copolymer-wrapped single-walled carbon nanotube/poly (methyl methacrylate) composites. J Appl Polym Sci 132:41547Google Scholar
  7. 7.
    Britz DA, Khlobystov AN (2006) Noncovalent interactions of molecules with single walled carbon nanotubes. Chem Soc Rev 35:637CrossRefPubMedGoogle Scholar
  8. 8.
    Okubo S, Okazaki T, Hirose-Takai K, Suenaga K, Okada S et al (2010) Electronic Structures of Single-Walled Carbon Nanotubes Encapsulating Ellipsoidal C-70. J Am Chem Soc 132:15252CrossRefPubMedGoogle Scholar
  9. 9.
    Yu T, Jiang N, Li Y (2014) Functionalized multi-walled carbon nanotube for improving the flame retardancy of ramie/poly (lactic acid) composite. Compos Sci Technol 104:26CrossRefGoogle Scholar
  10. 10.
    Wu Z, Xue M, Wang H, Tian X, Ding X et al (2013) Electrical and flame-retardant properties of carbon nanotube/poly (ethylene terephthalate) composites containing bisphenol A bis (diphenyl phosphate). Polymer 54:3334CrossRefGoogle Scholar
  11. 11.
    Aranberri I, Germán L, Matellanes L, Suárez MJ, Abascal E et al (2013) Investigation on flame retardancy and rheological and thermomechanical characterisation of multiwall carbon nanotube reinforced nanocomposites. Plastics, Rubber and Composites 40:133CrossRefGoogle Scholar
  12. 12.
    Zhang T, Du Z, Zou W, Li H, Zhang C (2012) The flame retardancy of blob-like multi-walled carbon nanotubes/silica nanospheres hybrids in poly (methyl methacrylate). Polym Degrad Stab 97:1716CrossRefGoogle Scholar
  13. 13.
    Im JS, Lee SK, In SJ, Lee Y-S (2010) Improved flame retardant properties of epoxy resin by fluorinated MMT/MWCNT additives. J Anal Appl Pyrolysis 89:225CrossRefGoogle Scholar
  14. 14.
    Knight CC, Ip F, Zeng C, Zhang C, Wang B (2013) A highly efficient fire-retardant nanomaterial based on carbon nanotubes and magnesium hydroxide. Fire and Materials 37:91CrossRefGoogle Scholar
  15. 15.
    Li C, Kang N-J, Labrandero SD, Wan J, González C, Wang D-Y (2013) Synergistic Effect of Carbon Nanotube and Polyethersulfone on Flame Retardancy of Carbon Fiber Reinforced Epoxy Composites. Ind Eng Chem Res 53:1040CrossRefGoogle Scholar
  16. 16.
    Ma H, Zhao L, Liu J, Wang J, Xu J (2014) Functionalizing carbon nanotubes by grafting cyclotriphosphazene derivative to improve both mechanical strength and flame retardancy. Polym Compos 35:2187CrossRefGoogle Scholar
  17. 17.
    Yu H, Liu J, Wen X, Jiang Z, Wang Y et al (2011) Charing polymer wrapped carbon nanotubes for simultaneously improving the flame retardancy and mechanical properties of epoxy resin. Polymer 52:4891CrossRefGoogle Scholar
  18. 18.
    Zhou K, Liu J, Shi Y, Jiang S, Wang D et al (2015) MoS2 nanolayers grown on carbon nanotubes: an advanced reinforcement for epoxy composites. ACS Appl Mater Interfaces 7:6070CrossRefPubMedGoogle Scholar
  19. 19.
    González-Domínguez JM, Ansón-Casaos A, Castell P, Díez-Pascual AM, Naffakh M et al (2010) Integration of block copolymer-wrapped single-wall carbon nanotubes into a trifunctional epoxy resin. Influence on thermal performance. Polym Degrad Stab 95:2065CrossRefGoogle Scholar
  20. 20.
    Du B, Fang Z (2011) Effects of carbon nanotubes on the thermal stability and flame retardancy of intumescent flame-retarded polypropylene. Polym Degrad Stab 96:1725CrossRefGoogle Scholar
  21. 21.
    Xu G, Cheng J, Wu H, Lin Z, Zhang Y, Wang H (2013) Functionalized carbon nanotubes with oligomeric intumescent flame retardant for reducing the agglomeration and flammability of poly (ethylene vinyl acetate) nanocomposites. Polym Compos 34:109CrossRefGoogle Scholar
  22. 22.
    Li Z-W, Shao B, Huang Y-S, Li X-H, Zhang Z-J (2014) Effect of core-shell zinc hydroxystannate nanoparticle-organic macromolecule composite flame retardant prepared by masterbatch method on flame-retardant behavior and mechanical properties of flexible poly (vinyl chloride). Polym Eng Sci 54:1983CrossRefGoogle Scholar
  23. 23.
    Wang X, Pang H, Chen W, Lin Y, Ning G (2013) Nanoengineering core/shell structured brucite@polyphosphate@amine hybrid system for enhanced flame retardant properties. Polym Degrad Stab 98:2609CrossRefGoogle Scholar
  24. 24.
    Ni J, Chen L, Zhao K, Hu Y, Song L (2011) Preparation of gel-silica/ammonium polyphosphate core-shell flame retardant and properties of polyurethane composites. Polym Adv Technol 22:1824CrossRefGoogle Scholar
  25. 25.
    Duan L, Yang H, Song L, Hou Y, Wang W et al (2016) Hyperbranched phosphorus/nitrogen-containing polymer in combination with ammonium polyphosphate as a novel flame retardant system for polypropylene. Polym Degrad Stab 134:179CrossRefGoogle Scholar
  26. 26.
    Huo S, Wang J, Yang S, Wang J, Zhang B et al (2016) Synthesis of a novel phosphorus-nitrogen type flame retardant composed of maleimide, triazine-trione, and phosphaphenanthrene and its flame retardant effect on epoxy resin. Polym Degrad Stab 131:106CrossRefGoogle Scholar
  27. 27.
    Yang S, Wang J, Huo S, Wang M, Wang J (2015) Preparation and flame retardancy of a compounded epoxy resin system composed of phosphorus/nitrogen-containing active compounds. Polym Degrad Stab 121:398CrossRefGoogle Scholar
  28. 28.
    Yang W, Zhang Y-R, Yuen AC-Y, Chen TB-Y, Chan M-C et al (2017) Synthesis of phosphorus-containing silane coupling agent for surface modification of glass fibers: Effective reinforcement and flame retardancy in poly(1,4-butylene terephthalate). Chem Eng J 321:257CrossRefGoogle Scholar
  29. 29.
    Duan L, Yang H, Shi Y, Hou Y, Zhu Y et al (2016) A Novel Branched Phosphorus-Containing Flame Retardant: Synthesis and Its Application into Poly (Butylene Terephthalate). Ind Eng Chem Res 55:10218CrossRefGoogle Scholar
  30. 30.
    Hooshangi Z, Feghhi SAH, Sheikh N (2015) The effect of electron-beam irradiation and halogen-free flame retardants on properties of poly butylene terephthalate. Radiat Phys Chem 108:54CrossRefGoogle Scholar
  31. 31.
    Shuidong Z, Lingcao T, Jizhao L, Hanxiong H, Guo J (2014) Relationship between structure and properties of reprocessed glass fiber reinforced flame retardant poly (butylene terephthalate). Polym Degrad Stab 105:140CrossRefGoogle Scholar
  32. 32.
    Chen Y-J, Wang W, Qiu Y et al (2017) Terminal group effects of phosphazene-triazine bi-group flame retardant additives in flame retardant polylactic acid composites. Polym Degrad Stab 140:166CrossRefGoogle Scholar
  33. 33.
    Besli S, Durmus M et al (2010) Fluorescent aminoarylcyclotetraphosphazenes. Polyhedron 29:2609CrossRefGoogle Scholar
  34. 34.
    Takeo O (1965) A New Method of Analyzing Thermogravimetric Data. Bull Chem Soc Jpn 38:1881CrossRefGoogle Scholar
  35. 35.
    Chen Y, Wang Q (2007) Thermal oxidative degradation kinetics of flame-retarded polypropylene with intumescent flame-retardant master batches in situ prepared in twin-screw extruder. Polym Degrad Stab 92:280CrossRefGoogle Scholar
  36. 36.
    Huo SQ, Wang J, Yang S et al (2018) Flame-retardant performance and mechanism of epoxy thermosets modified with a novel reactive flame retardant containing phosphorus, nitrogen, and sulfur. Polym Adv Technol 29:497CrossRefGoogle Scholar
  37. 37.
    Yang S, Wang J, Huo S, Wang M et al (2016) Synergistic flame-retardant effect of expandable graphite and phosphorus-containing compounds for epoxy resin: Strong bonding of different carbon residues. Polym Degrad Stab 128:89CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Materials Science & EngineeringBeijing Technology and Business UniversityBeijingPeople’s Republic of China
  2. 2.Beijing Huateng Hightech Co., Ltd.BeijingPeople’s Republic of China
  3. 3.Minist Educ, Key Lab Polymer Composite & Funct MatSun Yat-Sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations