Advertisement

Journal of Polymer Research

, 25:231 | Cite as

Fabrication of super-stretchable and electrical conductive membrane of spandex/multi-wall carbon nanotube/reduced graphene oxide composite

  • Qingning Kong
  • Zhonglin Luo
  • Yanbin Wang
  • Biaobing Wang
ORIGINAL PAPER
  • 133 Downloads

Abstract

Hybrid conductive fillers (hybrids) are prepared through simultaneous chemical reduction of the graphene oxide and acid-treated multi-wall carbon nanotube in the presence of hydrazine. Subsequently, the thermoplastic spandex-based composite membranes with different hybrids contents are fabricated by solution casting method. At 20 wt% loading of hybrids, the membrane displays both super-stretchability (387% of elongation at break) and good electrical conductivity (49.5 S cm−1). Further investigations of the electromechanical behaviour show that the strain sensitivity is dependent on hybrids content. Therefore, the as-prepared spandex/hybrids composite membranes are promising materials for the fabrication of wearable electronics and stretchable energy storage/conversion devices.

Keywords

Conductive membrane Multi-wall carbon nanotube Reduced graphene oxide 

Notes

Acknowledgements

This work was financially funded by NSFC (Grant No. 21304012), Science Foundation of Jiangsu Province (BK20130249), The Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

References

  1. 1.
    Yun YJ, Ah CS, Hong WG et al (2017) Highly conductive and environmentally stable gold/graphene yarns for flexible and wearable electronics [J]. Nanoscale 9(32):11439–11445CrossRefGoogle Scholar
  2. 2.
    Di J, Zhang X, Yong Z et al (2016) Carbon-nanotube fibers for wearable devices and smart textiles [J]. Adv Mater 28(47):10529–10538CrossRefGoogle Scholar
  3. 3.
    Son D, Koo JH, Song JK, Kim J, Lee M, Shim HJ, Park M, Lee M, Kim JH, Kim DH (2015) Stretchable carbon nanotube charge-trap floating-gate memory and logic devices for wearable electronics [J]. ACS Nano 9(5):5585–5593CrossRefGoogle Scholar
  4. 4.
    Sahatiya P, Badhulika S (2016) Solvent-free fabrication of Multi-walled carbon nanotube based flexible pressure sensor for ultra-sensitive touch pad and electronic skin applications [J]. RSC Adv 6(98):95836–95845CrossRefGoogle Scholar
  5. 5.
    Konwer S, Begum A, Bordoloi S, Boruah R (2017) Expanded graphene-oxide encapsulated polyaniline composites as sensing material for volatile organic compounds. J Polym Res 24(3):37CrossRefGoogle Scholar
  6. 6.
    Liu J, Zhang L, Wu HB, Lin J, Shen Z, Lou XW(D) (2014) High-performance flexible asymmetric supercapacitors based on a new graphene foam/carbon nanotube hybrid film [J]. Energy Environ Sci 7(11):3709–3719CrossRefGoogle Scholar
  7. 7.
    Lim YS, Tan YP, Lim HN et al (2013) Preparation and characterization of polypyrrole/graphene nanocomposite films and their electrochemical performance. J Polym Res [J] 20(6):156CrossRefGoogle Scholar
  8. 8.
    Li K, Liu J, Huang Y et al (2017) Integration of ultrathin graphene/polyaniline composite nanosheets with a robust 3D graphene framework for highly flexible all-solid-state supercapacitors with superior energy density and exceptional cycling stability [J]. J Mater Chem A 5(6):2710–2716CrossRefGoogle Scholar
  9. 9.
    Quinn MD, Wang T, Du JD et al (2016) Graphene as a photothermal actuator for control of lipid mesophase structure [J]. Nanoscale 9(1):341–348CrossRefGoogle Scholar
  10. 10.
    Zhang Y, Jiang HY, Li FB et al (2017) Graphene oxide based moisture-responsive biomimetic film actuators with nacre-like layered structures [J]. J Mater Chem A 5(28):14604–14610CrossRefGoogle Scholar
  11. 11.
    Lu Z, Chao YF, Ge Y et al (2017) High-performance hybrid carbon nanotube fibers for wearable energy storage [J]. Nanoscale 9(16):5063–5071CrossRefGoogle Scholar
  12. 12.
    Chi CH, Hsu YC, Tseng LC, Suen SY, Wu JY, Lee RH (2013) Carbon nanotube and graphite oxide surfaces modified with polyethylene oxide for dye-sensitized solar cells. J Polym Res 20(10):269CrossRefGoogle Scholar
  13. 13.
    Wang X, Shi G (2015) Flexible graphene devices related to energy conversion and storage [J]. Energy Environ Sci 8(3):790–823CrossRefGoogle Scholar
  14. 14.
    Deshmukh K, Ahamed MB, Sadasivuni KK et al (2016) Graphene oxide reinforced polyvinyl alcohol/polyethylene glycol blend composites as high-performance dielectric material. J Polym Res 23(8):159CrossRefGoogle Scholar
  15. 15.
    Pommamma D, Sadasivuni KK, Grohens Y et al (2014) Carbon nanotube based elastomer composites – an approach towards multifunctional materials [J]. J Mater Chem C 2(40):8446–8485CrossRefGoogle Scholar
  16. 16.
    Li D, Kaner RB (2008) Graphene-based materials [J]. Science 320(5880):1170–1171CrossRefGoogle Scholar
  17. 17.
    Ramanathan T, Abdala AA, Stankovich S et al (2008) Functionalized graphene sheets for polymer nanocomposites [J]. Nat Nanotechnol 3(6):327–331CrossRefGoogle Scholar
  18. 18.
    Chua CK, Pumera M (2013) Covalent chemistry on graphene [J]. Chem Soc Rev 42(8):3222–3233CrossRefGoogle Scholar
  19. 19.
    Hsiao ST, Ma CCM, Tien HW et al (2015) The effect of covalent modification of graphene nanosheets on the electrical property and electromagnetic interference shielding performance of water-borne polyurethane composite [J]. ACS Appl Mater Interfaces 7(4):2817–2826CrossRefGoogle Scholar
  20. 20.
    Wang H, Bi SG, Ye YS et al (2015) An effective non-covalent grafting approach to functionalize individually dispersed reduced graphene oxide sheets with high grafting density, solubility and electrical conductivity [J]. Nanoscale 7(8):3548–3557CrossRefGoogle Scholar
  21. 21.
    Song S, Wan C, Zhang Y (2015) Non-covalent functionalization of graphene oxide by pyrene-block copolymers for enhancing physical properties of poly (methyl methacrylate) [J]. RSC Adv 5(97):79947–79955CrossRefGoogle Scholar
  22. 22.
    Jo K, Lee T, Choi HJ et al (2011) Stable aqueous dispersion of reduced graphene Nanosheets via non-covalent functionalization with conducting polymers and application in transparent electrodes [J]. Langmuir 27(5):2014–2018CrossRefGoogle Scholar
  23. 23.
    Xiao YJ, Wang WY, Chen XJ et al (2016) Hybrid network structure and thermal conductive properties in poly (vinylidene fluoride) composites based on carbon nanotubes and graphene nanoplatelets [J]. Compos A Appl Sci Manuf 90:614–625CrossRefGoogle Scholar
  24. 24.
    Liu H, Gao J, Hunang W et al (2016) Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers [J]. Nanoscale 8(26):12977–12989CrossRefGoogle Scholar
  25. 25.
    Yang XL, Zhan YQ, Yang J et al (2012) Synergetic effect of cyanogen functionalized carbon nanotube and graphene on the mechanical and thermal properties of poly (arylene ether nitrile). J Polym Res 19(1):9806CrossRefGoogle Scholar
  26. 26.
    Im H, Kim J (2012) Thermal conductivity of a graphene oxide–carbon nanotube hybrid/epoxy composite [J]. Carbon 50(15):5429–5440CrossRefGoogle Scholar
  27. 27.
    Pang H, Chen C, Zhang YC et al (2011) The effect of electric field, annealing temperature and filler loading on the percolation threshold of polystyrene containing carbon nanotubes and graphene nanosheets [J]. Carbon 49(6):1980–1988CrossRefGoogle Scholar
  28. 28.
    Du J, Zhao L, Zeng Y et al (2011) Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure [J]. Carbon 49(4):1094–1100CrossRefGoogle Scholar
  29. 29.
    Wang SM, Zhang XX, Wu XD et al (2016) Tailoring percolating conductive networks of natural rubber composites for flexible strain sensors via a cellulose nanocrystal templated assembly [J]. Soft Matter 12(3):845CrossRefGoogle Scholar
  30. 30.
    Lin Y, Liu SQ, Chen S et al (2016) A highly stretchable and sensitive strain sensor based on graphene–elastomer composites with a novel double-interconnected network [J]. J Mater Chem C 4(26):6345–6352CrossRefGoogle Scholar
  31. 31.
    Zhang XX, Qasim K, Hu ST (2014) Enhanced piezoresistance repeatability of carbon nanotube/silicane composites achieved ustin ratiation-induced graft polymerization. J Polym Res 21(6):479CrossRefGoogle Scholar
  32. 32.
    Cédric C, Vladan K, Maryline L et al (2007) Design and development of a flexible strain sensor for textile structures based on a conductive polymer composite [J]. Sensors 7(4):473–492CrossRefGoogle Scholar
  33. 33.
    Zhou J, Xu X, Yu H, Lubineau G (2017) Deformable and wearable carbon nanotube microwire-based sensors for ultrasensitive monitoring of strain, pressure and torsion [J]. Nanoscale 9(2):604–612CrossRefGoogle Scholar
  34. 34.
    Duan L, Fu S, Deng H et al (2014) The resistivity-strain behavior of conductive polymer composites: stability and sensitivity [J]. J Mater Chem A 2(40):17085–17098CrossRefGoogle Scholar
  35. 35.
    Zhang XX, Hu ST, Wang M et al (2015) Continuous graphene and carbon nanotube based high flexible and transparent pressure sensor arrays [J]. Nanotechnology 26(11):115501CrossRefGoogle Scholar
  36. 36.
    Lee SW, Reuveny A, Reeder J et al (2016) A transparent bending-insensitive pressure sensor [J]. Nat Nanotechnol 11(5):472–478CrossRefGoogle Scholar
  37. 37.
    Liu H, Dong MY, Huang WJ et al (2017) Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing [J]. J Mater Chem C 5(1):73–83CrossRefGoogle Scholar
  38. 38.
    Roh E, Hwang BU, Kim D et al (2015) Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a Nanohybrid of carbon nanotubes and conductive elastomers [J]. ACS Nano 9(6):6252–6261CrossRefGoogle Scholar
  39. 39.
    Luo ZL, Cai ZP, Wang YB et al (2016) In situ growth of silver nanowires on the reduced graphene oxide sheets for transparent electrically conductive films [J]. RSC Adv 6(43):37124–37129CrossRefGoogle Scholar
  40. 40.
    Verma M, Chauhan SS, Dhawan SK et al (2017) Graphene nanoplatelets/carbon nanotubes/polyurethane composites as efficient shield against electromagnetic polluting radiations [J]. Compos Part B Eng 120:118–127CrossRefGoogle Scholar
  41. 41.
    Bian J, Lin HL, He FX et al (2013) Fabrication of microwave exfoliated graphite oxide reinforced thermoplastic polyurethane nanocomposites: effects of filler on morphology, mechanical, thermal and conductive properties [J]. Compos A Appl Sci Manuf 47(1):72–82CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Collaborat. Innovat. Ctr. Photovolat Sci. & Eng., Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Sch. Mat. Sci. & EngChangzhou UniversityChangzhouChina

Personalised recommendations