Advertisement

Journal of Polymer Research

, 25:199 | Cite as

Fabrication of fullerenol-incorporated thin-film nanocomposite forward osmosis membranes for improved desalination performances

  • M. Gimhani N. Perera
  • Yeshan R. Galagedara
  • Yiwei Ren
  • Mahesh Jayaweera
  • Yuntao Zhao
  • Rohan Weerasooriya
ORIGINAL PAPER

Abstract

Development and use of novel membranes for forward osmosis (FO) applications have gained popularity throughout the world. To enhance FO membrane performance, a novel thin-film nanocomposite membrane was fabricated by interfacial polymerization incorporating Fullerenol (C60(OH)n) nanomaterial, having n in the range of 24–28 into the active layer. Different concentrations of fullerenol loading (100, 200, 400, and 800 ppm) were added to the top skin layer. The structural and surface properties of the pure thin-film composite membrane (TFC) and fullerenol-incorporated thin-film nanocomposite (FTFC) membranes, were characterized by ATR-FTIR, SEM, and AFM. FO performance and separation properties were evaluated in terms of water flux, reverse salt flux, antifouling propensity, water permeability and salt permeability for all TFC and FTFC membranes. Osmotic performance tests showed that FTFC membranes achieved higher water flux and reverse salt flux selectivity compared with those of TFC membranes. The FTFC membrane with a fullerenol loading of 400 ppm exhibited a water flux of 26.1 L m−2 h−1 (LMH), which is 83.03% higher than that of the TFC membrane with a specific reverse salt flux of 0.18 g/L using 1 M sodium chloride draw solution against deionized water in FO mode. The fullerenol incorporation in FTFC membranes also contributed to a decreased fouling propensity.

Keywords

Fouling Permeability Salt flux Water contact angle Water flux 

Nomenclature

A

water permeability

AL-DS

active layer facing draw solution

AL-FS

active layer facing feed solution

Am

effective membrane area

B

salt permeability

CNTs

carbon nanotubes

Vt

volume of feed solution

Ct

draw solute concentration

FO

forward osmosis

FR%

flux reduction ratio

FRR%

flux recovery ratio

FTFC

fullerenol-incorporated thin-film composite

GO

graphene oxide

IP

interfacial polymerization

Jc

final water flux after the physical cleaning

Jo

initial flux

Js

reverse salt flux

Js/Jv

specific salt flux

Jt

flux after accelerated fouling test

Jv

water flux

PRO

pressure retarded osmosis

PSF

polysulfone

TFC

thin-film composite

Δt

test time

ΔV

volume change

Notes

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Grant Nos. 51503205 and 51478452) and the National Research Council of Sri Lanka (Grant No. NRC-TO-16-015).

References

  1. 1.
    Mekonnen MM, Gerbens-Leenes PW, Hoekstra AY (2016) Future electricity: the challenge of reducing both carbon and water footprint. Sci Total Environ 569–570:1282–1288CrossRefPubMedGoogle Scholar
  2. 2.
    Wang Y-N, Goh K, Li X, Setiawan L, Wang R (2017) Membranes and processes for forward osmosis-based desalination: recent advances and future prospects. DesalinationGoogle Scholar
  3. 3.
    Singh N, Petrinic I, Hélix-Nielsen CH, Basu S, Balakrishnan M (2018) Concentrating molasses distillery wastewater using biomimetic forward osmosis (FO) membranes. Water Res 130:271–280CrossRefPubMedGoogle Scholar
  4. 4.
    Yip NY, Tiraferri A, Phillip WA, Schiffman JD, Hoover LA, Kim YC, Elimelech M (2011) Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients. Environ Sci Technol 45:4360–4369CrossRefPubMedGoogle Scholar
  5. 5.
    Yang Q, Wang KY, Chung T-S (2009) A novel dual-layer forward osmosis membrane for protein enrichment and concentration. Sep Purif Technol 69:269–274CrossRefGoogle Scholar
  6. 6.
    Sant’Anna V, Marczak LDF, Tessaro IC (2012) Membrane concentration of liquid foods by forward osmosis: process and quality view. J Food Eng 111:483–489CrossRefGoogle Scholar
  7. 7.
    Qasim M, Darwish NA, Sarp S, Hilal N (2015) Water desalination by forward (direct) osmosis phenomenon: a comprehensive review. Desalination 374:47–69CrossRefGoogle Scholar
  8. 8.
    Cath TY, Childress AE, Elimelech M (2006) Forward osmosis: principles, applications, and recent developments. J Membr Sci 281:70–87CrossRefGoogle Scholar
  9. 9.
    Li D, Yan Y, Wang H (2016) Recent advances in polymer and polymer composite membranes for reverse and forward osmosis processes. Prog Polym Sci 61:104–155CrossRefGoogle Scholar
  10. 10.
    Zhang Y, Miao X, Pan G, Shi H, Yan H, Xu J, Guo M, Li S, Zhang Y, Liu Y (2017) Highly improved permeation property of thin-film-composite polyamide membrane for water desalination. J Polym Res 24:5CrossRefGoogle Scholar
  11. 11.
    Zhang X, Shen L, Lang W-Z, Wang Y (2017) Improved performance of thin-film composite membrane with PVDF/PFSA substrate for forward osmosis process. J Membr Sci 535:188–199CrossRefGoogle Scholar
  12. 12.
    Ren J, O'Grady B, deJesus G, McCutcheon JR (2016) Sulfonated polysulfone supported high performance thin film composite membranes for forward osmosis. Polymer 103:486–497CrossRefGoogle Scholar
  13. 13.
    Wang X, Wang X, Xiao P, Li J, Tian E, Zhao Y, Ren Y (2016) High water permeable free-standing cellulose triacetate/graphene oxide membrane with enhanced antibiofouling and mechanical properties for forward osmosis. Colloids and Surfaces A: Physicochem Eng A spects 508:327–335CrossRefGoogle Scholar
  14. 14.
    Shen L, Xiong S, Wang Y (2016) Graphene oxide incorporated thin-film composite membranes for forward osmosis applications. Chem Eng Sci 143:194–205CrossRefGoogle Scholar
  15. 15.
    Dong H, Zhao L, Zhang L, Chen H, Gao C, Winston HWS (2015) High-flux reverse osmosis membranes incorporated with NaY zeolite nano-particles for brackish water desalination. J Membr Sci 476:373–383CrossRefGoogle Scholar
  16. 16.
    Alam J, Alhoshan M, Dass LA, Shukla AK, Muthumareeswaran MR, Hussain M, Aldwayyan AS (2016) Atomic layer deposition of TiO2 film on a polyethersulfone membrane: separation applications. J Polym Res 23:183CrossRefGoogle Scholar
  17. 17.
    Amini M, Jahanshahi M, Rahimpour A (2013) Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes. J Membr Sci 435:233–241CrossRefGoogle Scholar
  18. 18.
    Penkova AV, Acquah SFA, Dmitrenko ME, Sokolova MP, Mikhailova MЕ, Polyakov ES, Ermakov SS, Markelov DA, Roizard D (2016) Improvement of pervaporation PVA membranes by the controlled incorporation of fullerenol nano-particles. Mater Des 96:416–423CrossRefGoogle Scholar
  19. 19.
    Penkova AV, Dmitrenko ME, Ermakov SS, Toikka AM, Roizard D (2017) Novel green PVA-fullerenol mixed matrix supported membranes for separating water-THF mixtures by pervaporation. Environ Sci Pollut Res 25(21):20354–20362CrossRefPubMedGoogle Scholar
  20. 20.
    Plisko TV, Liubimova AS, Bildyukevich AV, Penkova AV, Dmitrenko ME, Mikhailovskii VY, Melnikova GB, Semenov KN, Doroshkevich NV, Kuzminova AI (2018) Fabrication and characterization of polyamide-fullerenol thin film nanocomposite hollow fiber membranes with enhanced antifouling performance. J Membr Sci 551:20–36CrossRefGoogle Scholar
  21. 21.
    Kramer CN (2007) Fullerene research advances. Nova Science Publishers Inc, New York, p 307Google Scholar
  22. 22.
    Ge Q, Ding L, Wu T, Xu G, Yang F, Xiang M (2018) Effect of surfactant on morphology and pore size of polysulfone membrane. J Polym Res 25:21CrossRefGoogle Scholar
  23. 23.
    Zhao Y, Wang X, Ren Y, Pei D (2017) Mesh-embedded Polysulfone/Sulfonated Polysulfone supported thin film composite membranes for forward osmosis. Appl Mater Interfaces 10:2918–2928CrossRefGoogle Scholar
  24. 24.
    Zhao Y, Ren Y, Wang X, Xiao P, Tian E, Wang X, Li J (2016) An initial study of EDTA complex based draw solutes in forward osmosis process. Desalination 378:28–36CrossRefGoogle Scholar
  25. 25.
    Tiraferri A, Yip NY, Straub AP, Castrillon SRV, Elimelech M (2013) A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes. J Membr Sci 444:523–538CrossRefGoogle Scholar
  26. 26.
    Fulmer PA, Wynne JH (2011) Development of broad-spectrum antimicrobial latexpaint surfaces employing active amphiphilic compounds. ACS Appl Mater Interfaces 3:2878–2884CrossRefPubMedGoogle Scholar
  27. 27.
    Branca C, D'Angelo G, Crupi C, Khouzami K, Rifici S, Ruello G, Wanderlingh U (2016) Role of the OH and NH vibrational groups in polysaccharide-nanocomposite interactions: a FTIR-ATR study on chitosan and chitosan/clay films. Polymer 99:614–622CrossRefGoogle Scholar
  28. 28.
    Saviello D, Toniolo L, Goidanich S, Casadio F (2016) Non-invasive identification of plastic materials in museum collections with portable FTIR reflectance spectroscopy: reference database and practical applications. Microchem J 124:868–877CrossRefGoogle Scholar
  29. 29.
    Yang X, Zhen M, Li G, Liu X, Wang X, Shu C, Li J, Wang C (2013) Preparation of Pd-decorated fullerenols on carbon nanotubes with excellent electrocatalytic properties in alkaline media. J Mater Chem A 1:8105–8110CrossRefGoogle Scholar
  30. 30.
    Nakanishi K (1962) Infrared absorption spectroscopy. Practical Holden-day Inc and Nankodo company. Tokyo, San Francisco, p 233Google Scholar
  31. 31.
    Tasaki K, Gasa J, Wang H, DeSousa R (2007) Fabrication and characterization of fullerene-Nafion composite membranes. Polymer 48:4438–4448CrossRefGoogle Scholar
  32. 32.
    Zhao C, Xu X, Chen J, Yang F (2013) Effect of graphene oxide concentration on the morphologies and antifouling properties of PVDF ultrafiltration membranes. J Environ Chem Eng 1:349–354CrossRefGoogle Scholar
  33. 33.
    Tiraferri A, Kang Y, Giannelis EP, Elimelech M (2012) Highly hydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nano-particles. ACS Appl Mater Interfaces 4:5044–5053CrossRefPubMedGoogle Scholar
  34. 34.
    Hu M, Mi B (2013) Enabling graphene oxide nanosheets as water separation membranes. Environ SciTechnol 47:3715–3723CrossRefGoogle Scholar
  35. 35.
    Jhaveri JH, Murthy ZVP (2016) A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination 379:137–154CrossRefGoogle Scholar
  36. 36.
    Ayyaru S, Ahn YH (2017) Application of sulfonic acid group functionalized graphene oxide to improve hydrophilicity, permeability, and antifouling of PVDF nano-composite ultrafiltration membranes. J Membr Sci 525:210–219CrossRefGoogle Scholar
  37. 37.
    Rong G, Zhou D, Pang J (2018) Preparation of high-performance antifouling polyphenylsulfone ultrafiltration membrane by the addition of sulfonated polyaniline. J Polym Res 25:66CrossRefGoogle Scholar
  38. 38.
    Wang P, Ma J, Wang Z, Shi F, Liu Q (2012) Enhanced separation performance of PVDF/PVP-g-MMT Nanocomposite ultrafiltration membrane based on the NVP-grafted polymerization modification of Montmorillonite (MMT). Langmuir 28:4776–4786CrossRefPubMedGoogle Scholar
  39. 39.
    Kim DG, Kang H, Han S, Lee J-C (2012) The increase of antifouling properties of ultrafiltration membrane coated by star-shaped polymers. J Mater Chem 22:8654CrossRefGoogle Scholar
  40. 40.
    Vatanpoura V, Madaenia SS, Moradian BR, Zinadinia S, Astinchap B (2011) Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. J Membr Sci 375:284–294CrossRefGoogle Scholar
  41. 41.
    Bogler A, Lin S, Bar-Zeev E (2017) Biofouling of membrane distillation, forward osmosis and pressure retarded osmosis: principles, impacts and future directions. J Membr Sci 542:378–398CrossRefGoogle Scholar
  42. 42.
    Dejardin P (2006) Proteins at solid–liquid interfaces. Springer-Verlag, BerlinCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • M. Gimhani N. Perera
    • 1
    • 2
  • Yeshan R. Galagedara
    • 1
    • 2
  • Yiwei Ren
    • 1
  • Mahesh Jayaweera
    • 3
  • Yuntao Zhao
    • 1
    • 2
  • Rohan Weerasooriya
    • 4
  1. 1.Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Department of Civil EngineeringUniversity of MoratuwaKatubeddaSri Lanka
  4. 4.Environmental Science ProgramNational Institute of Fundamental Studies Hantana RoadKandySri Lanka

Personalised recommendations