Advertisement

Journal of Polymer Research

, 25:202 | Cite as

Pectin-graft-poly(2-acrylamido-2-methyl-1-propane sulfonic acid) silver nanocomposite hydrogel beads: evaluation as matrix material for sustained release formulations of ketoprofen and antibacterial assay

  • Gangadhar Babaladimath
  • Vishalakshi Badalamoole
REVIEW PAPER
  • 58 Downloads

Abstract

Pectin-graft-poly(2-acrylamido-2-methyl-1-propane sulfonic acid) (Pec-g-PAMPS) gel was made in the form of beads by subjecting the solution containing pectin (Pec), 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) and ammonium peroxodisulphate to microwave irradiation followed by ionic crosslinking in CaCl2 solution. Gel beads containing silver nanoparticles were also prepared by the same method but with the addition of silver nitrate and trisodium citrate solution prior to microwave irradiation. The synthesized Pec-g-PAMPS and its silver nanocomposite (Pec-g-PAMPS-Ag) gel beads were characterized using FTIR, TGA, XRD, SEM, EDS and TEM techniques. The effect of incorporation of Ag NPs on the biological activity of Pec-g-PAMPS was studied by zone inhibition method considering two bacterial strains namely E. coli and B. subtilis. The nanocomposite gel exhibited higher antibacterial activity compared to the parent gel, which was comparable with the standard drug, Streptomycin. The in vitro drug release profiles of the parent gel and its composite were analyzed using Ketoprofen (KF) to study the effect of incorporation of Ag NPs on the drug release behavior of the Pec-g-PAMPS. The presence of silver nanoparticles enhanced both swelling of the gel beads and the extent of drug release significantly.

Keywords

Pectin Hydrogel Nanocomposite Silver nanoparticles Antibacterial activity Ketoprofen Drug delivery 

Notes

Acknowledgements

The authors thank Mr. Naveen K, Research Scholar, Department of Biosciences, Mangalore University, Karnataka, India for carrying out the antibacterial studies.

References

  1. 1.
    Hamidi M, Azadi A, Rafiei P (2008) Adv Drug Deliv Rev 60:1638–1649CrossRefPubMedGoogle Scholar
  2. 2.
    Khutoryanskiy VV (2007) Int J Pharm 33:415–426Google Scholar
  3. 3.
    Elvira C, Mano JF, San Román J, Reis RL (2002) Biomaterials 23:1955–1966CrossRefPubMedGoogle Scholar
  4. 4.
    Siepmann J, Siegel RA, Rathbone MJ (eds) (2012) Fundamentals and applications of controlled release drug delivery, hydrogels (chapter 1). Springer, New York, pp 75–106Google Scholar
  5. 5.
    Coviello T, Matricardi P, Marianecci C, Alhaique FJ (2007) J Control Release 119:5–24CrossRefPubMedGoogle Scholar
  6. 6.
    Nair LS, Laurencin CT (2007) Prog Polym Sci 32:762–798CrossRefGoogle Scholar
  7. 7.
    Tian H, Tang Z, Zhuang X, Chen X, Jing X (2012) Prog Polym Sci 37:237–280CrossRefGoogle Scholar
  8. 8.
    Suhag D, Bhatia R, Das S, Shakeel A, Ghosh A, Singh A, Sinha OP, Chakrabarti S, Mukherjee M (2015) RSC Adv 53:5963–53972Google Scholar
  9. 9.
    Kalia S, Sabaa MW (2013) Polysaccharide based graft copolymers. In: Kalia S, Sabaa MW, Kango S (eds) Polymer grafting: a versatile means to modify the polysaccharides (chapter-1). Springer-Verlag, Berlin, pp 1–14Google Scholar
  10. 10.
    de Souza JRR, de Carvalho JIX, Trevisan MTS, de Paula RCM, Ricardo NMPS, Feitosa JPA (2009) Food Hydrocoll 23:2278–2286CrossRefGoogle Scholar
  11. 11.
    Sriamornsak P (1998) Int J Pharm 169:213–220CrossRefGoogle Scholar
  12. 12.
    Itoh K, Hirayama T, Takahashi A, Kubo W, Miyazaki S, Dairaku M, Togashi M, Mikami R, Attwood D (2007) Int J Pharm 33:590–596Google Scholar
  13. 13.
    Munjeri O, Collett JH, Fell JTJ (1997) J Control Release 46:273–278CrossRefGoogle Scholar
  14. 14.
    Sutar PB, Mishra RK, Pal K, Banthia AKJ (2008) J Mater Sci Mater Med 19:2247–2253CrossRefPubMedGoogle Scholar
  15. 15.
    Junga J, Arnoldb RD, Wicker L (2013) Colloids Surf B: Biointerfaces 104:116–121CrossRefGoogle Scholar
  16. 16.
    Dafe A, Etemadi H, Dilmaghani A, Mahdavinia GR (2017) Int J Biol Macromol 97:536–543CrossRefPubMedGoogle Scholar
  17. 17.
    Suna X, Shi J, Xua X, Cao S (2013) Int J Biol Macromol 59:273–281CrossRefGoogle Scholar
  18. 18.
    Hua S, Ma H, Li X, Yang H, Wang A (2010) Int J Biol Macromol 46:517–523CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang J, Wang Q, Wang A (2010) Acta Biomater 6:445–454CrossRefPubMedGoogle Scholar
  20. 20.
    Pongjanyakul T, Puttipipatkhachorn S (2007) Int J Pharm 331:61–71CrossRefPubMedGoogle Scholar
  21. 21.
    Zauro SA, Vishalakshi B (2018) Sep Sci Technol:1–17Google Scholar
  22. 22.
    Kodoth AK, Ghate VM, Lewis SA, Badalamoole V (2018) Int J Biol Macromol 115:418–430CrossRefPubMedGoogle Scholar
  23. 23.
    Duran N, Duran M, de Jesus BM, Seabra AB, Favaro WJ, Nakazato G (2016) Nanomedicine: NBM 12:789–799CrossRefGoogle Scholar
  24. 24.
    Guzman M, Dille J, Godet S (2012) Nanomedicine: NBM 8:37–45CrossRefGoogle Scholar
  25. 25.
    Vimala K, Sivudu KS, Mohan YM, Sreedhar B, Raju KM (2009) Carbohydr Polym 75:463–471CrossRefGoogle Scholar
  26. 26.
    Gulsonbi M, Parthasarathy S, Raj KB, Jaisankar V (2016) Ecotoxicol Environ Saf 134:421–426CrossRefPubMedGoogle Scholar
  27. 27.
    Bardajee GR, Hooshyar Z, Kabiri F (2012) Bull Kor Chem Soc 33:2635–2641CrossRefGoogle Scholar
  28. 28.
    Hooshyar Z, Bardajee GR (2017) J Iran Chem Soc 14:541–549CrossRefGoogle Scholar
  29. 29.
    Gangadhar B, Vishalakshi B (2018) Polym Int.  https://doi.org/10.1002/pi.5587 CrossRefGoogle Scholar
  30. 30.
    Siepmann J, Peppas NA (2011) Int J Pharm 418:6–12CrossRefPubMedGoogle Scholar
  31. 31.
    Higuchi T (1963) J Pharm Sci 84:64–77Google Scholar
  32. 32.
    Hixsonl AW, Crowel JH (1931) Ind Eng Chem 23:923–931CrossRefGoogle Scholar
  33. 33.
    Korsmeyer RW, Gurny R, Doelker EM, Buri P, Peppas NA (1983) Int J Pharm 15:25–35CrossRefGoogle Scholar
  34. 34.
    Kabiri K, Mirzadeh H, Zohuriaan-Mehr MJ, Daliri M (2009) Polym Int 58:1252–1259 [27]CrossRefGoogle Scholar
  35. 35.
    Mohan YM, Vimala K, Thomas V, Varaprasad K, Sreedhar B, Bajpai SK, Raju KM (2010) J Colloid Interface Sci 342:73–82CrossRefGoogle Scholar
  36. 36.
    Jayaramudu T, Raghavendra GM, Varaprasad K, Sadiku R, Ramam K, Mohana Raju K (2013) Carbohydr Polym 95:188–194CrossRefPubMedGoogle Scholar
  37. 37.
    Babu VR, Kim C, Kim S, Ahn C, Lee Y (2010) Carbohydr Polym 81:196–202CrossRefGoogle Scholar
  38. 38.
    Akkaya MÇ, Emik S, Güçlü G, İyim TB, Özgümüş S (2009) J Appl Polym Sci 114:1150–1159CrossRefGoogle Scholar
  39. 39.
    Sharma VK, Yngard RA, Lin Y (2009) Adv Colloid Interf Sci 145:83–96CrossRefGoogle Scholar
  40. 40.
    Rai M, Yadav A, Gade A (2009) Biotechnol Adv 27:76–83CrossRefPubMedGoogle Scholar
  41. 41.
    Li WR, Xie XB, Shi QS, Zeng HY, Yang YSO, Chen YB (2010) Appl Microbiol Biotechnol 85:1115–1122CrossRefPubMedGoogle Scholar
  42. 42.
    Hörter D, Dressman JB (2001) Adv Drug Deliv Rev 46:75–87CrossRefPubMedGoogle Scholar
  43. 43.
    Wang Q, Xi X, Zhang X, Zhang J, Wang A (2010) Int J Biol Macromol 46:356–362CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Gangadhar Babaladimath
    • 1
  • Vishalakshi Badalamoole
    • 1
  1. 1.Department of Post-Graduate Studies & Research in ChemistryMangalore UniversityMangaloreIndia

Personalised recommendations