Journal of Polymer Research

, 25:204 | Cite as

GO nanosheets localization by morphological study on PLA-GO electrospun nanocomposite nanofibers

  • Amir Hossein Davoodi
  • Saeedeh MazinaniEmail author
  • Farhad Sharif
  • Seyed Omid Ranaei-Siadat


In this study we prepare a nanocomposite substrate from poly lactic acid (PLA) and graphene oxide (GO) using electrospinning. Determining the possible placement of graphene oxide nano-sheets in the electrospun fiber mats is the main goal of this work. The investigative methods employed include scanning electron microscopy (SEM), atomic force microscopy (AFM) micrographs, tensile modulus and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR). It is shown that the localization of nanoparticle by different methods controls different final properties. We performed the study of the mechanical properties, surface chemical structure and topology of obtaining nanofiber mats. Studies showed that the location of GO sheets depends on the lateral size of them and based on this claim we estimated three possible locations for them: (1) small GO sheets (less than 200 nm) fully or partially inside the electrospun fibers, (2) some larger ones rolling around and on the fibers surface under the high applied voltage, and (3) parts of large sheets bridging between the fibers.


Graphene oxide Ploy lactic acid Electrospinning process Nano-sheets localization Nanocomposite nanofibers Surface chemical structure 



This research did not receive any grants from funding agencies in the public, commercial, or not-for-profit sectors.


  1. 1.
    Dias JC, Ribeiro C, Sencadas V, Botelho G, Ribelles JLG, Lanceros-Mendez S (2012) Influence of fiber diameter and crystallinity on the stability of electrospun poly (L-lactic acid) membranes to hydrolytic degradation. Polym Test 31(6):770–776CrossRefGoogle Scholar
  2. 2.
    Zhao Y et al (2012) Degradation of electrospun poly (L-lactide) membranes under cyclic loading. Journal of Applied Polymer Science 124(S1)CrossRefGoogle Scholar
  3. 3.
    Liu L, Ren Y, Li Y, Liang Y (2013) Effects of hard and soft components on the structure formation, crystallization behavior and mechanical properties of electrospun poly (L-lactic acid) nanofibers. Polymer 54(19):5250–5256CrossRefGoogle Scholar
  4. 4.
    Das S, Wajid AS, Bhattacharia SK, Wilting MD, Rivero IV, Green MJ (2013) Electrospinning of polymer nanofibers loaded with noncovalently functionalized graphene. J Appl Polym Sci 128(6):4040–4046CrossRefGoogle Scholar
  5. 5.
    Khan N (2012) Applications of electrospun nanofibers in the biomedical field. Studies by Undergraduate Researchers at Guelph 5(2):63–73Google Scholar
  6. 6.
    Threepopnatkul P et al (2010) Mechanical and antibacterial properties of electrospun PLA/PEG mats. Journal of Metals, Materials and Minerals 20(3):185–187Google Scholar
  7. 7.
    Wang C, Chien HS, Yan KW, Hung CL, Hung KL, Tsai SJ, Jhang HJ (2009) Correlation between processing parameters and microstructure of electrospun poly (D, L-lactic acid) nanofibers. Polymer 50(25):6100–6110CrossRefGoogle Scholar
  8. 8.
    Wang D, Duan H, Lü J, Lü C (2017) Fabrication of thermo-responsive polymer functionalized reduced graphene oxide@ Fe 3 O 4@ au magnetic nanocomposites for enhanced catalytic applications. J Mater Chem A 5(10):5088–5097CrossRefGoogle Scholar
  9. 9.
    Chien HS, Wang C (2013) Morphology, microstructure, and electrical properties of poly (D, L-lactic acid)/carbon nanocapsule composite nanofibers. J Appl Polym Sci 128(2):958–969CrossRefGoogle Scholar
  10. 10.
    Müller K, Bugnicourt E, Latorre M, Jorda M, Echegoyen Sanz Y, Lagaron J, Miesbauer O, Bianchin A, Hankin S, Bölz U, Pérez G, Jesdinszki M, Lindner M, Scheuerer Z, Castelló S, Schmid M (2017) Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials 7(4):74CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Gómez-Pachón EY, Sánchez-Arévalo FM, Sabina FJ, Maciel-Cerda A, Campos RM, Batina N, Morales-Reyes I, Vera-Graziano R (2013) Characterisation and modelling of the elastic properties of poly (lactic acid) nanofibre scaffolds. J Mater Sci 48(23):8308–8319CrossRefGoogle Scholar
  12. 12.
    Neppalli R, Causin V, Marigo A, Meincken M, Hartmann P, van Reenen AJ (2013) Effect of electrospun ethylene vinyl alcohol copolymer (EVOH) fibres on the structure, morphology, and properties of poly (lactic acid)(PLA). Polymer 54(21):5909–5919CrossRefGoogle Scholar
  13. 13.
    Shi Q, Zhou C, Yue Y, Guo W, Wu Y, Wu Q (2012) Mechanical properties and in vitro degradation of electrospun bio-nanocomposite mats from PLA and cellulose nanocrystals. Carbohydr Polym 90(1):301–308CrossRefPubMedGoogle Scholar
  14. 14.
    Inkinen S, Hakkarainen M, Albertsson AC, Södergård A (2011) From lactic acid to poly (lactic acid)(PLA): characterization and analysis of PLA and its precursors. Biomacromolecules 12(3):523–532CrossRefPubMedGoogle Scholar
  15. 15.
    Gonçalves, C., J. Coutinho, and I.M. Marrucho, Optical properties. Poly (lactic acid): synthesis, structures, properties, processing, and applications, 2010: p. 97–112CrossRefGoogle Scholar
  16. 16.
    Shahriary L, Athawale AA (2014) Graphene oxide synthesized by using modified hummers approach. Int J Renew Energy Environ Eng 2(01):58–63Google Scholar
  17. 17.
    Wu D, Cheng Y, Feng S, Yao Z, Zhang M (2013) Crystallization behavior of polylactide/graphene composites. Ind Eng Chem Res 52(20):6731–6739CrossRefGoogle Scholar
  18. 18.
    Wang M et al (2017) Progress in toughening poly (lactic acid) with renewable polymers. Polym Rev:1–37Google Scholar
  19. 19.
    Wujcik EK, Monty CN (2013) Nanotechnology for implantable sensors: carbon nanotubes and graphene in medicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 5(3):233–249PubMedGoogle Scholar
  20. 20.
    Das TK, Prusty S (2013) Graphene-based polymer composites and their applications. Polym-Plast Technol Eng 52(4):319–331CrossRefGoogle Scholar
  21. 21.
    Pinto AM, Cabral J, Tanaka DAP, Mendes AM, Magalhães FD (2013) Effect of incorporation of graphene oxide and graphene nanoplatelets on mechanical and gas permeability properties of poly (lactic acid) films. Polym Int 62(1):33–40CrossRefGoogle Scholar
  22. 22.
    Ma H, Su WX, Tai ZX, Sun DF, Yan XB, Liu B, Xue QJ (2012) Preparation and cytocompatibility of polylactic acid/hydroxyapatite/graphene oxide nanocomposite fibrous membrane. Chin Sci Bull 57(23):3051–3058CrossRefGoogle Scholar
  23. 23.
    Gao Y, Picot OT, Bilotti E, Peijs T (2017) Influence of filler size on the properties of poly (lactic acid)(PLA)/graphene nanoplatelet (GNP) nanocomposites. Eur Polym J 86:117–131CrossRefGoogle Scholar
  24. 24.
    Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253CrossRefGoogle Scholar
  25. 25.
    Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40(17):1511–1575CrossRefGoogle Scholar
  26. 26.
    Li B, Zhong W-H (2011) Review on polymer/graphite nanoplatelet nanocomposites. J Mater Sci 46(17):5595–5614CrossRefGoogle Scholar
  27. 27.
    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Liu C, Shen J, Yeung KWK, Tjong SC (2017) Development and antibacterial performance of novel Polylactic acid-Graphene oxide-silver nanoparticle hybrid Nanocomposite Mats prepared by electrospinning. ACS Biomaterials Science & Engineering 3(3):471–486CrossRefGoogle Scholar
  29. 29.
    Wu K, Zhang X, Yang W, Liu X, Jiao Y, Zhou C (2016) Influence of layer-by-layer assembled electrospun poly (l-lactic acid) nanofiber mats on the bioactivity of endothelial cells. Appl Surf Sci 390:838–846CrossRefGoogle Scholar
  30. 30.
    Du Q et al (2010) Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors. Electrochim Acta 55(12):3897–3903CrossRefGoogle Scholar
  31. 31.
    Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Baharvand H, Kiani S, al-Deyab SS, Ramakrishna S (2011) Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J Tissue Eng Regen Med 5(4):e17–e35CrossRefPubMedGoogle Scholar
  32. 32.
    Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347CrossRefPubMedGoogle Scholar
  33. 33.
    Chung C, Kim YK, Shin D, Ryoo SR, Hong BH, Min DH (2013) Biomedical applications of graphene and graphene oxide. Acc Chem Res 46(10):2211–2224CrossRefPubMedGoogle Scholar
  34. 34.
    Stachewicz U, Bailey RJ, Zhang H, Stone CA, Willis CR, Barber AH (2015) Wetting hierarchy in oleophobic 3D electrospun nanofiber networks. ACS Appl Mater Interfaces 7(30):16645–16652CrossRefPubMedGoogle Scholar
  35. 35.
    Iqbal Q, Bernstein P, Zhu Y, Rahamim J, Cebe P, Staii C (2015) Quantitative analysis of mechanical and electrostatic properties of poly (lactic) acid fibers and poly (lactic) acid—carbon nanotube composites using atomic force microscopy. Nanotechnology 26(10):105702CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Polymer Engineering and Color TechnologyAmirkabir University of technologyTehranIran
  2. 2.New Technologies Research Center (NTRC)Amirkabir University of TechnologyTehranIran
  3. 3.NanoBiotechnology Engineering Laboratory, Department of Biotechnology, Faculty of Energy Engineering and New TechnologiesShahid Beheshti UniversityTehranIran

Personalised recommendations