Advertisement

Journal of Polymer Research

, 25:195 | Cite as

Properties of polyamide 612/poly(vinyl alcohol) blends and their impact on free volume and oxygen barrier properties

  • Hong-bo Li
  • Jia-wei Wu
  • Ya-qiong Huang
  • James Runt
  • C. M. Huang
  • K. S. Huang
  • Jen-taut Yeh
ORIGINAL PAPER
  • 79 Downloads

Abstract

Oxygen transmission rates and free volume properties (i.e. average volumes of free-volume-cavities (Vf), mean number of the free volume cavities per unit volume (I3) and fractional free volume (Fv)) values of bio-based polyamide 612 (PA612)/poly(vinyl alcohol) (PVA) (i.e. PA612xPVA03y, PA612xPVA05y, PA612xPVA08y and PA612xPVA14y) blend films were reduced to a minimum value, when their PVA content reached corresponding optimal values of 25, 20, 15 and 10 wt%, respectively. The minimum oxygen transmission rate, Vf, I3 and Fv value obtained for the best PA61290PVA1410, PA61285PVA0815, PA61280PVA0520 and PA61275PVA0325 bio-based blown films reduced considerably with decreasing PVA degrees of polymerization. As evidenced by the results of dynamical mechanical analysis, differential scanning calorimetry, wide angle X-ray diffraction and Fourier transform infrared spectroscopic experiments, PA612 and PVA are miscible to some extent at the molecular level when their PVA contents are ≤ the corresponding optimal values. The significantly improved oxygen barrier and free volume properties for the PA612xPVAzy blend films with optimized compositions is at least in part to the enhanced intermolecular interactions between PA612 carbonyl groups and PVA hydroxyl groups.

Keywords

Bio-based, polyamide 612 Poly(vinyl alcohol) Oxygen barrier Free volume Miscibility 

Notes

Acknowledgements

The authors would like to express their appreciation to Ministry of Science and Technology, Taiwan (MOST104-2221-E-168 -018 -MY3) for support of this work. JR would like to thank the NSF Polymers Program for support through DMR-1505953.

References

  1. 1.
    Anuar Shafferina SD, Abnisa F, Wan Daud WMA, Aroua MK (2016) A review on pyrolysis of plastic wastes. Energy Convers Manag 115:308–326CrossRefGoogle Scholar
  2. 2.
    Berto D, Rampazzo F, Gion C, Noventa S, Ronchi F, Traldi U, Giorgi G, Cicero AM, Giovanardi O (2017) Preliminary study to characterize plastic polymers using elemental analyser/isotope ratio mass spectrometry (EA/IRMS). Chemosphere 176:47–56CrossRefPubMedGoogle Scholar
  3. 3.
    Plastics Europe (2018) Plastics - the Facts 2017, Belgium. http://www.plasticseurope.org. Accessed 5 Jan 2018
  4. 4.
    Kolybaba M, Tabil LG, Panigrahi S, Crerar WJ, Powell T, Wang B, (2003) Biodegradable Polymers: Past, Present, and Future. Asabe/csbe North Central Intersectional Meeting.  https://doi.org/10.13031/2013.41300
  5. 5.
    Ishigaki T, Sugano W, Nakanishi A, Tateda M, Ike M, Fujita M (2004) The degradability of biodegradable plastics in aerobic and anaerobic waste landfill model reactors. Chemosphere 54:225–233CrossRefPubMedGoogle Scholar
  6. 6.
    Kawai F (1995). Adv Biochem Eng Biotechnol 52:151–194PubMedGoogle Scholar
  7. 7.
    Winnacker M, Rieger B (2016) Biobased Polyamides: Recent Advances in Basic and Applied Research. Rapid Commun 37:1391–1413CrossRefGoogle Scholar
  8. 8.
    Brehmer B, Boom RM, Sanders J (2009) Maximum fossil fuel feedstock replacement potential of petrochemicals via biorefineries. Chem Eng Res Des 87:1103–1119CrossRefGoogle Scholar
  9. 9.
    Pai FC, Lai SM, Chu HH (2013) Characterization and Properties of Reactive Poly(lactic acid)/Polyamide 610 Biomass Blends. J Appl Polym Sci 130:2563–2571CrossRefGoogle Scholar
  10. 10.
    Funk I, Rimmel N, Schorsch C, Sieber V, Schmid J (2017) Production of dodecanedioic acid via biotransformation of low cost plant-oil derivatives using Candida tropicalis. J Ind Microbiol Biotechnol 44(10):1491–1502CrossRefPubMedGoogle Scholar
  11. 11.
    Dayrit FM (2015) The Properties of Lauric Acid and Their Significance in Coconut Oil. J Am Oil Chem Soc 92:1–15CrossRefGoogle Scholar
  12. 12.
    Green KD, Turner MK, Woodley JM (2000) Candida cloacae oxidation of long-chain fatty acids to dioic acids. Enzyme Microb Technol 27:205–211CrossRefPubMedGoogle Scholar
  13. 13.
    Pal AK, Katiyar V (2017) Melt processing of biodegradable poly(lactic acid)/functionalized chitosan nanocomposite films: mechanical modeling with improved oxygen barrier and thermal properties. J Polym Res 24:173CrossRefGoogle Scholar
  14. 14.
    Leja K, Lewandowicz G (2010). Pol J Environ Stud 19:255–266Google Scholar
  15. 15.
    Baraker BM, Lobo B (2017) Dispersion parameters of cadmium chloride doped PVA-PVP blend films. J Polym Res 24:84CrossRefGoogle Scholar
  16. 16.
    Finch CA (1992) Polyvinyl alcohol: developments. Wiley, New YorkGoogle Scholar
  17. 17.
    Nakano N, Yamane S, Toyosima K (1989) Poval (polyvinyl-alcohol). Japan polymer society, KyotoGoogle Scholar
  18. 18.
    Jang J, Lee DK (2003) Plasticizer effect on the melting and crystallization behavior of polyvinyl alcohol. Polymer 44:8139–8146CrossRefGoogle Scholar
  19. 19.
    Demerlis CC, Schoneker DR (2003) Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem Toxicol 41:319–326CrossRefPubMedGoogle Scholar
  20. 20.
    Ikejima T, Cao A, Yoshie N, Inoue Y (1998) Surface composition and biodegradability of poly(3-hydroxybutyric acid)/poly(vinyl alcohol) blend films. Polym Degrad Stab 62:463–469CrossRefGoogle Scholar
  21. 21.
    Yeh JT, Xu P, Tsai FC (2007) Blending properties of poly(vinyl alcohol) and nylon 6-clay nanocomposite blends. J Mater Sci 42:6590–6599CrossRefGoogle Scholar
  22. 22.
    Koulouri EG, Kallitsis JK (1998) Miscibility behavior of Poly(vinyl alcohol)/Nylon 6 blends and their reactive blending with Poly(ethylene-co-ethyl acrylate). Polymer 39:2373–2379CrossRefGoogle Scholar
  23. 23.
    Ishikawa T, Nagai S, Kasai N (1981). Macromol Chem Phys 182:977–988CrossRefGoogle Scholar
  24. 24.
    Cui L, Yeh JT, Wang K, Fu Q (2008) Miscibility and isothermal crystallization behavior of polyamide 6/poly(vinyl alcohol) blend. J Polym Sci Polym Phys Ed 46:1360–1368CrossRefGoogle Scholar
  25. 25.
    Cui L, Fu Q, Chang CJ, Yeh JT (2009) The effect of poly(vinyl alcohol) hydrolysis on the properties of its blends with nylon 6. Polym Eng Sci 49:1553–1561CrossRefGoogle Scholar
  26. 26.
    Cui L, Yeh JT, Wang K, Tsai FC, Fu Q (2009). J Membr Sci 327:226–233CrossRefGoogle Scholar
  27. 27.
    Huang YQ, Wu JW, Li G, Li HB, Wang DW, Runt J, Yeh JT (2018) Oxygen barrier, free volume, and blending properties of polyamide 12/poly (vinyl alcohol) blends. Polym Adv Technol 29:1649–1660CrossRefGoogle Scholar
  28. 28.
    Kumar S, Satapathy BK (2014) Maiti SN. Mater Des 62:382–391CrossRefGoogle Scholar
  29. 29.
    Tao SJ (1972) Positronium Annihilation in Molecular Substances. J Chem Phys 56:5499–5410CrossRefGoogle Scholar
  30. 30.
    Nakanishi H, Wang SJ, Jean YC (1988) Positron annihilation in fluids. World Scientific, SingaporeGoogle Scholar
  31. 31.
    Deng Q, Sundar CS, Jean YC (1992) Pressure dependence of free-volume hole properties in an epoxy polymer. J Phys Chem 96:492–495CrossRefGoogle Scholar
  32. 32.
    Wang YY, Nakanishi H, Jean YC, Sandreczki TC (1990) Positron annihilation in amine-cured epoxy polymers—pressure dependence. J Polym Sci Polym Phys Ed 28:1431–1441CrossRefGoogle Scholar
  33. 33.
    Kumar S, Satapathy BK, Maiti SN (2013) Correlation of morphological parameters and mechanical performance of polyamide-612/poly (ethylene-octene) elastomer blends. Polym Adv Technol 24:511–519CrossRefGoogle Scholar
  34. 34.
    Probst O, Moore EM, Resasco DE, Grady BP (2004) Nucleation of polyvinyl alcohol crystallization by single-walled carbon nanotubes. Polymer 45:4437–4443CrossRefGoogle Scholar
  35. 35.
    Qian MB, Xu XD, Liu LN, Song YM, Wang H, Qian J (2017) 2D-alumina platelets enhance mechanical and abrasion properties of PA612 via interfacial hydrogen-bond interactions. Chem Eng J 308:760–771CrossRefGoogle Scholar
  36. 36.
    Elzein T, Brogly M, Schultz J (2002) Crystallinity measurements of polyamides adsorbed as thin films. Polymer 43:4811–4822CrossRefGoogle Scholar
  37. 37.
    Holland BJ, Hay JN (2002) The thermal degradation of poly(vinyl acetate) measured by thermal analysis–Fourier transform infrared spectroscopy. Polymer 43:2207–2211CrossRefGoogle Scholar
  38. 38.
    Holland BJ, Hay JN (2001) The thermal degradation of poly(vinyl alcohol). Polymer 42:6775–6783CrossRefGoogle Scholar
  39. 39.
    Cerrada ML, Perez E (1998) Wide-Angle X-ray Diffraction Study of the Phase Behavior of Vinyl Alcohol−Ethylene Copolymers. Macromolecules 31:2559–2564CrossRefGoogle Scholar
  40. 40.
    Rusu G, Rusu E (2010) Evaluation of thermal and dielectric behaviour of some anionic nylon 612 copolymers. Mater Des 31:4601–4610CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and EngineeringHubei UniversityWuhanChina
  2. 2.Department of Materials Science and EngineeringPenn State UniversityUniversity ParkUSA
  3. 3.Department of Materials EngineeringKun Shan UniversityTainanTaiwan

Personalised recommendations