Synthesis, structural, thermal, optical and dielectric properties of chitosan biopolymer; influence of PVP and α-Fe2O3 Nanorods

  • Adel M. El SayedEmail author
  • Ahmad Desoky M. Mohamad


The present work reports the influence of Polyvinylpyrrolidone (PVP) and hematite (α-Fe2O3) nanorods (NRs) on the physicochemical properties of chitosan (Cs), as an approach to broaden its medical and technological applications. Hematite NRs of 11.4 nm diameter and 87.9 nm crystallite size were prepared by a free-template chemical method. Cs, PVP/Cs and blend loaded with hematite NRs were prepared by solution casting. Significant changes in the films’ surface were clarified using the scanning electron microscope (SEM). Fourier transformation infrared spectroscopy (FT-IR) confirmed the interaction between the NRs and the NH2 and OH functional groups of Cs. DSC measurements showed one endothermic peak assigned to the water elimination, and an exothermic one, in the range 268–287 °C, attributed to the decomposition of saccharine structure in Cs. The swelling properties of the films were sensitive to the pH of the solution. PVP/Cs film showed ~ 85% transmittance in the visible region and its optical band gap narrowed from 5.4 eV to 4.05 eV after loading with 2.0 wt.% hematite. The influence of NRs content on the optical constants of the films is discussed. The dielectric properties depend on the film’ structure. The large Polaron tunneling (LPT) model is the best suitable mechanism for the electric conduction. Due to their high thermal stability and decomposition temperature, transmittance and high conductivity, the prepared films are a candidate for the packaging industry, for use in some medical applications such as treating some chronic wounds, and optical windows and fibers.


PVP/chitosan blend Biopolymer Nanocomposite DSC Swelling Optical constants Conductivity Conduction mechanism 


  1. 1.
    Pandey AR, Singh US, Momin M, Bhavsar C (2017) Chitosan: application in tissue engineering and skin grafting. J Polym Res 24:125CrossRefGoogle Scholar
  2. 2.
    Ryan CC, Bardosova M, Pembl ME (2017) Structural and mechanical properties of a range of chitosan-based hybrid networks loaded with colloidal silica and polystyrene particles. J Mater Sci 52:8338–8347CrossRefGoogle Scholar
  3. 3.
    Tyliszczak B, Drabczyk A, K.-Kramarczyk S, B.-Wąs K, S.-Kupiec A (2017) In vitro cytotoxicity of hydrogels based on chitosan and modified with gold nanoparticles. J Polym Res 24:153CrossRefGoogle Scholar
  4. 4.
    Takada K, Yin H, Matsui T, Ali MA, Kaneko T (2017) Bio-based mesoporous sponges of chitosan conjugated with amino acid-diketopiperazine through oil-in-water emulsions. J Polym Res 24:216CrossRefGoogle Scholar
  5. 5.
    Bhowmick A, Pramanik N, Jana P, Mitra T, Gnanamani A, Das M, Kundu PP (2017) Development of bone-like zirconium oxide nanoceramic modified chitosan based porous nanocomposites for biomedical application. Int J Biol Macromol 95:348–356CrossRefPubMedGoogle Scholar
  6. 6.
    Ahmed J, Mulla M, Arfat YA, Thai LA (2017) Mechanical, thermal, structural and barrier properties of crab shell chitosan/graphene oxide composite films. Food Hydrocoll 71:141–148CrossRefGoogle Scholar
  7. 7.
    Patel GB, Singh NL, Singh F (2017) Modification of chitosan-based biod egradable polymer by irradiation with MeV ions for electrolyte applications. Mater Sci Eng B 225:150–159CrossRefGoogle Scholar
  8. 8.
    Aziz SB (2017) Morphological and optical characteristics of chitosan(1-x):Cuo x (4 ≤ x ≤ 12) based polymer Nano-composites: optical dielectric loss as an alternative method for Tauc’s model. Nanomaterials 7:444CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Wang J, Song S, Gao S, Muchakayala R, Liu R, Ma Q (2017) Mg-ion conducting gel polymer electrolyte membranes containing biodegradable chitosan: preparation, structural, electrical and electrochemical properties. Polym Test 62:278–286CrossRefGoogle Scholar
  10. 10.
    Mafirad S, Mehrnia MR, Zahedi P, Hosseini SN (2017) Chitosan-based nanocomposite membranes with improved properties: effect of cellulose acetate blending and TiO2 nanoparticles incorporation. Polym Compos.
  11. 11.
    Youssef AM, El-Nahrawy AM, Abou Hammad AB (2017) Sol-gel synthesis and characterizations of hybrid chitosan-PEG/calcium silicate nanocomposite modified with ZnO-NPs and (E102) for optical and antibacterial applications. Int J Biol Macromol 97:561–567CrossRefPubMedGoogle Scholar
  12. 12.
    Nivethaa EAK, Narayanan V, Stephen A (2015) Synthesis and spectral characterization of silver embedded chitosan matrix nanocomposite for the selective colorimetric sensing of toxic mercury. Spectrochim Acta A 143:242–250CrossRefGoogle Scholar
  13. 13.
    Biranje S, Madiwale P, Adivarekar RV (2017) Electrospinning of chitosan/PVA nanofibrous membrane at ultralow solvent concentration. J Polym Res 24:92CrossRefGoogle Scholar
  14. 14.
    Johns J, Nakason C (2011) Dielectric properties of natural rubber/chitosan blends: effects of blend ratio and compatibilization. J Non-Cryst Solids 357:1816–1821CrossRefGoogle Scholar
  15. 15.
    Dayarian S, Zamani A, Moheb A, Masoomi M (2014) Physico-mechanical properties of films of chitosan, carboxymethyl chitosan, and their blends. J Polym Environ 22:409–416CrossRefGoogle Scholar
  16. 16.
    Lewandowska K (2015) Miscibility and physical properties of chitosan and polyacrylamide blends. J Mol Liq 209:301–305CrossRefGoogle Scholar
  17. 17.
    Islam A, Riaz M, Yasin T (2013) Structural and viscoelastic properties of chitosan-based hydrogel and its drug delivery application. Int J Biol Macromol 59:119–124CrossRefPubMedGoogle Scholar
  18. 18.
    Islam A, Yasin T, Gull N, Khan SM, Munawar MA, Shafiq M, Sabir A, Jamil T (2016) Evaluation of selected properties of biocompatible chitosan/poly(vinyl alcohol) blends. Int J Biol Macromol 82:551–556CrossRefPubMedGoogle Scholar
  19. 19.
    Sionkowska A, Wisniewski M, Skopinska J, Vicini S, Marsano E (2005) The influence of UV irradiation on the mechanical properties of chitosan/poly(vinyl pyrrolidone) blends. Polym Degrad Stab 88:261–267CrossRefGoogle Scholar
  20. 20.
    Wang S, Shen L, Zhang W, Tong Y (2005) Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules 6:3067–3072CrossRefPubMedGoogle Scholar
  21. 21.
    Yang X, Meng N, Zhu Y, Zhou Y, Nie W, Chen P (2016) Greatly improved mechanical and thermal properties of chitosan by carboxyl-functionalized MoS2 nanosheets. J Mater Sci 51:1344–1353CrossRefGoogle Scholar
  22. 22.
    Sambudi NS, Park SB, Cho K (2016) Enhancing the mechanical properties of electrospun chitosan/poly(vinyl alcohol) fibers by mineralization with calcium carbonate. J Mater Sci 51:7742–7753CrossRefGoogle Scholar
  23. 23.
    Li J, Hou Y, Chen X, Ding X, Liu Y, Shen X, Cai K (2014) Recyclable heparin and chitosan conjugated magnetic nanocomposites for selective removal of low-density lipoprotein from plasma. J Mater Sci Mater Med 25:1055–1064CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang Z, Li T, Chen B, Wang S, Guo Z (2017) Self-healing supramolecular hydrogel of poly(vinyl alcohol)/chitosan carbon dots. J Mater Sci 52:10614–10623CrossRefGoogle Scholar
  25. 25.
    Kumar PS, Selvakumar M, Babu SG, Jaganathan SK, Karuthapandian S, Chattopadhyay S (2015) Novel CuO/chitosan nanocomposite thin film: facile hand picking recoverable, efficient and reusable heterogeneous photocatalyst. RSC Adv 5:57493–57501CrossRefGoogle Scholar
  26. 26.
    Azzam EMS, Solyman SM, Abd-Elaal AA (2016) Fabrication of chitosan/ag-nanoparticles/clay nanocomposites for catalytic control on oxidative polymerization of aniline. Colloid Surface A 510:221–230CrossRefGoogle Scholar
  27. 27.
    Bibi S, Nawaz M, Yasin T, Riaz M (2016) Chitosan/CNTs nanocomposite as green carrier material for pesticides controlled release. J Polym Res 23:154CrossRefGoogle Scholar
  28. 28.
    Mohamed RR, Rizk NA, Abd El Hady BM, Abdallah HM, Sabaa MW (2017) Synthesis, characterization and application of biodegradable crosslinked carboxymethyl chitosan/poly(ethylene glycol) clay nanocomposites. J Polym Environ 25:667–682CrossRefGoogle Scholar
  29. 29.
    Saravanan A, Ramasamy RP (2016) Chitosan-maghemite-LiClO4 – a new green conducting superpara magnetic nanocomposite. J Polym Res 23:174CrossRefGoogle Scholar
  30. 30.
    Cocarta AI, Gutanu V, Dragan ES (2017) Structural, morphological and magnetic characterization of metal-chitosan/poly (vinyl amine) complexes. J Polym Res 24:20CrossRefGoogle Scholar
  31. 31.
    Singh J, Srivastava M, Dutta J, Dutta PK (2011) Preparation and properties of hybrid monodispersed magnetic α-Fe2O3 based chitosan nanocomposite film for industrial and biomedical applications. Int J Biol Macromol 48:170–176CrossRefPubMedGoogle Scholar
  32. 32.
    Cabanas-Polo S, Distaso M, Peukert W, Boccaccini AR (2015) Electrophoretic deposition of α-Fe2O3/chitosan nanocomposite coatings for functional and biomedical applications. J Nanosci Nanotechnol 15:10149–10155CrossRefPubMedGoogle Scholar
  33. 33.
    Costa-Júnior ES, Barbosa-Stancioli EF, Mansur AAP, Vasconcelos WL, Mansur HS (2009) Preparation and characterization of chitosan/poly(vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydr Polym 76:472–481CrossRefGoogle Scholar
  34. 34.
    Mohammed G, El Sayed AM, Morsi WM (2018) Spectroscopic, thermal, and electrical properties of MgO/ polyvinylpyrrolidone/ polyvinyl alcohol nanocomposites. J Phys Chem Solids 115:238–247CrossRefGoogle Scholar
  35. 35.
    El Fewaty NH, El Sayed AM, Hafez RS (2016) Synthesis, structural and optical properties of tin oxide nanoparticles and its CMC/PEG–PVA nanocomposite films. Polym Sci Ser A 58:1004–1016CrossRefGoogle Scholar
  36. 36.
    Tretinnikov ON, Zagorskaya SA (2012) Determination of the degree of crystallinity of poly (vinyl alcohol) by FTIR spectroscopy. J Appl Spectrosc 79:521–526CrossRefGoogle Scholar
  37. 37.
    Ali SW, Rajendran S, Joshi M (2011) Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydr Polym 83:438–446CrossRefGoogle Scholar
  38. 38.
    Song C, Yu H, Zhang M, Yang Y, Zhang G (2013) Physicochemical properties and antioxidant activity of chitosan from the blowfly Chrysomya megacephala larvae. Int J Biolog Macromol 60:347–354CrossRefGoogle Scholar
  39. 39.
    Novoselova LY (2016) Hematite nanopowder obtained from waste: iron-removal sludge. Powder Technol 287:364–372CrossRefGoogle Scholar
  40. 40.
    Lassoued A, Lassoued MS, Dkhil B, Gadri A, Ammar S (2017) Structural, optical and morphological characterization of cu-doped α-Fe2O3 nanoparticles synthesized through co-precipitation technique. J Mol Struct 1148:276–281CrossRefGoogle Scholar
  41. 41.
    Mishra SK, Ferreira JMF, Kannan S (2015) Mechanically stable antimicrobial chitosan–PVA–silver nanocomposite coatings deposited on titanium implants. Carbohydr Polym 121:37–48CrossRefPubMedGoogle Scholar
  42. 42.
    Neto CGT, Giacometti JA, Job AE, Ferreira FC, Fonseca JLC, Pereira MR (2005) Thermal analysis of chitosan based networks. Carbohydr Polym 62:97–103CrossRefGoogle Scholar
  43. 43.
    Casettari L, Vllasaliu D, Castagnino E, Stolnik S, Howdle S, Illum L (2012) PEGylated chitosan derivatives: synthesis, characterizations and pharmaceutical applications. Prog Polym Sci 37:659–685CrossRefGoogle Scholar
  44. 44.
    Yamaguchi I, Tokuchi K, Fukuzaki H, Koyama Y, Takakuda K, Monma H, Tanaka J (2001) Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. J Biomed Mater Res 55:20–27CrossRefPubMedGoogle Scholar
  45. 45.
    Sakurai K, Maegawa T, Takahashi T (2000) Glass transition temperature of chitosan and miscibility of chitosan/poly(N-vinyl pyrrolidone) blends. Polymer 41:7051–7056CrossRefGoogle Scholar
  46. 46.
    Lewandowska K (2009) Miscibility and thermal stability of poly(vinyl alcohol)/chitosan mixtures. Thermochim Acta 493:42–48CrossRefGoogle Scholar
  47. 47.
    El Sayed AM, Morsi WM (2014) α-Fe2O3 /(PVA + PEG) nanocomposite films; synthesis, optical, and dielectric characterizations. J Mater Sci 49:5378–5387CrossRefGoogle Scholar
  48. 48.
    Aziz SB, Rasheed MA, Hussein AM, Ahmed HM (2017) Fabrication of polymer blend composites based on [PVA-PVP](1-x):(Ag2S)x (0.01 ≤x ≤ 0.03) with small optical band gaps: structural and optical properties. Mater Sci Semicond Process 71:197–203CrossRefGoogle Scholar
  49. 49.
    Abdullah OG, Aziz SB, Omer KM, Salih YM (2015) Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite. J Mater Sci 26:5303–5309Google Scholar
  50. 50.
    Bhatt AS, Bhat DK, Santosh MS (2010) Electrical and magnetic properties of chitosan-magnetite nanocomposites. Physica B 405:2078–2082CrossRefGoogle Scholar
  51. 51.
    Shaban M, Mustafa M, El Sayed AM (2016) Structural, optical, and photocatalytic properties of the spray deposited nanoporous CdS thin films; influence of copper doping, annealing, and deposition parameters. Mater Sci Semicond Process 56:329–343CrossRefGoogle Scholar
  52. 52.
    Singh NL, Qureshi A, Singh F, Avasthi DK (2007) Effect of swift heavy ion irradiation on dielectrics properties of polymer composite films. Mater Sci Eng B 137:85–92CrossRefGoogle Scholar
  53. 53.
    Badry MD, Wahba MA, Khaled RK, Farghali AA (2015) Preparation and dielectric properties of magnetite/chitosan nanocomposite film. Middle East J Appl Sci 05:940–944Google Scholar
  54. 54.
    Sudhakar YN, Selvakumar M, Bhat DK (2013) LiClO4-doped plasticized chitosan and poly(ethylene glycol) blend as biodegradable polymer electrolyte for supercapacitors. Ionics 19:277–285CrossRefGoogle Scholar
  55. 55.
    Prajapati GK, Gupta PN (2009) Conduction mechanism in un-irradiated and c-irradiated PVA–H3PO4 polymer electrolytes. Nucl Instrum Meth B 267:3328–3332CrossRefGoogle Scholar
  56. 56.
    Winie T, Arof AK (2004) Dielectric behaviour and AC conductivity of LiCF3SO3 doped H-chitosan polymer films. Ionics 10:193–199CrossRefGoogle Scholar
  57. 57.
    Buraidah MH, Teo LP, Majid SR, Arof AK (2009) Ionic conductivity by correlated barrier hopping in NH4I doped chitosan solid electrolyte. Physica B 404:1373–1379CrossRefGoogle Scholar
  58. 58.
    Shukur MF, Majid NA, Ithnin R, Kadir MFZ (2013) Effect of plasticization on the conductivity and dielectric properties of starch–chitosan blend biopolymer electrolytes infused with NH4Br. Phys Scr T157:014051CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Adel M. El Sayed
    • 1
    • 2
    Email author
  • Ahmad Desoky M. Mohamad
    • 3
    • 4
  1. 1.Department of Physics, Faculty of ScienceFayoum UniversityFayoumEgypt
  2. 2.Department of Physics, Faculty of ScienceNorthern Border UniversityArarKingdom of Saudi Arabia
  3. 3.Department of Chemistry, Faculty of ScienceSohag UniversitySohagEgypt
  4. 4.Department of Chemistry, Faculty of ScienceNorthern Border UniversityArarKingdom of Saudi Arabia

Personalised recommendations