Journal of Polymer Research

, 25:52 | Cite as

Synthesis and properties of novel organosoluble and light-colored poly(ester-amide)s and poly(ester-imide)s with triptycene moiety

ORIGINAL PAPER
  • 90 Downloads

Abstract

Two series of new triptycene-containing poly(ester-amide)s and poly(ester-imide)s were prepared from 1,4-bis(3-aminobenzoyloxy)triptycene with various aromatic dicarboxylic acids and dianhydrides, respectively. The synthesis of the poly(ester-amide)s was achieved by the phosphorylation polyamidation reaction by means of triphenyl phosphite and pyridine, and the synthesis of the poly(ester-imide)s included ring-opening polyaddition to give poly(amic acid)s followed by thermal imidization and chemical imidization to polyimides. All the poly(ester-amide)s and most of the poly(ester-imide)s presented good solubility in many organic solvents and could be solution-cast into transparent and flexible films. These poly(ester-amide)s and poly(ester-imide)s displayed discernible glass-transition temperatures (Tgs) between 242 and 298 °C in the DSC traces and showed moderate thermal stability with 10 wt% loss temperatures above 464 °C in nitrogen or air. These highly optically transparent polymer films possess an ultraviolet-visible absorption cut-off wavelength (λ0) down to 344 nm. 1,4-Bis(4-aminobenzoyloxy)triptycene was also synthesized and used for polymer synthesis; however, less favorable results were obtained.

Keywords

Triptycene Poly(ester-amide)s Poly(ester-imide)s Optical transparency Solubility 

Supplementary material

10965_2018_1452_MOESM1_ESM.docx (1.6 mb)
ESM 1 (DOCX 1604 kb)

References

  1. 1.
    Yang HH (1989) Aromatic high-strength fibers. John Wiley & Sons, Inc, New YorkGoogle Scholar
  2. 2.
    Sroog CE (1991). Prog Polym Sci 16:561CrossRefGoogle Scholar
  3. 3.
    Ghosh MK, Mittal KL (eds) (1996) Polyimides: fundamentals and applications. Marcel Dekker, New YorkGoogle Scholar
  4. 4.
    Garcia JM, Garcia FC, Serna F, de la Pena JL (2010). Prog Polym Sci 35:623CrossRefGoogle Scholar
  5. 5.
    Liou GS, Yen HJ (2010) Polyimides. In: Matyjaszewski K, Moller M (eds) Polymer science: A comprehensive reference, vol 5. Elsevier BV, Amsterdam, pp 497–535Google Scholar
  6. 6.
    Liaw DJ, Wang KL, Huang YC, Lee KR, Lai JY, Ha CS (2012). Prog Polym Sci 37:907CrossRefGoogle Scholar
  7. 7.
    Imai Y (1995). High Perform Polym 7:337CrossRefGoogle Scholar
  8. 8.
    de Abajo J, de la Campa JG (1999). Adv Polym Sci 140:23CrossRefGoogle Scholar
  9. 9.
    Ghosh MK, Sen SK, Banejee S, Voit B (2012). RSC Adv 2:5900CrossRefGoogle Scholar
  10. 10.
    Hsiao SH, Huang TL (2004). J Polym Res 11:9CrossRefGoogle Scholar
  11. 11.
    Hsiao SH, Chang YH (2004). J Polym Sci Part A: Polym Chem 42:1255CrossRefGoogle Scholar
  12. 12.
    Chung CL, Tzu TW, Hsiao SH (2006). J Polym Res 13:495CrossRefGoogle Scholar
  13. 13.
    Mao HC, Zhang SB (2014). J Mater Chem A 2:9835CrossRefGoogle Scholar
  14. 14.
    Li X, Jiang JW, Pan Y, Sheng SR, Liu XL (2015). High Perform Polym 27:37CrossRefGoogle Scholar
  15. 15.
    Li CY, Yi L, Xu ST, Wu XM, Huang W, Yan DY (2017). J Polym Res 24:7CrossRefGoogle Scholar
  16. 16.
    Ando S, Matsuura T, Sasaki S (1997). Polym J 29:69CrossRefGoogle Scholar
  17. 17.
    Hasegawa M, Horie K (2001). Prog Polym Sci 26:259CrossRefGoogle Scholar
  18. 18.
    Hasegawa M (2017). Polymers 9:520CrossRefGoogle Scholar
  19. 19.
    Bartlett PD, Ryan MJ, Cohen SG (1942). J Am Chem Soc 64:2649CrossRefGoogle Scholar
  20. 20.
    Skvarchenko VR, Shalaev VK, Klabunovskii EI (1974). Russ Chem Rev 43:951CrossRefGoogle Scholar
  21. 21.
    Long TM, Swager TM (2003). J Am Chem Soc 125:14113CrossRefGoogle Scholar
  22. 22.
    Cho YJ, Park HB (2011). Macromol Rapid Commun 32:579CrossRefGoogle Scholar
  23. 23.
    Wiegand JR, Smith ZP, Liu Q, Patterson CT, Freeman BD, Guo R (2014). J Mater Chem A 2:13309CrossRefGoogle Scholar
  24. 24.
    Weidman JR, Luo S, Breier JM, Buckley P, Gao P, Guo R (2017). Polymer 126:314CrossRefGoogle Scholar
  25. 25.
    Zhang Q, Li S, Li W, Zhang S (2007). Polymer 48:6246CrossRefGoogle Scholar
  26. 26.
    Sydlik SA, Chen Z, Swager TM (2011). Macromolecules 44:976CrossRefGoogle Scholar
  27. 27.
    Hsiao SH, Wang HM, Chen WJ, Lee TM, Leu CM (2011). J Polym Sci Part A: Polym Chem 49:3109CrossRefGoogle Scholar
  28. 28.
    Hsiao SH, Wang HM, Chou JS, Guo WJ, Lee TM, Leu CM, Su CW (2012). J Polym Res 19:9757CrossRefGoogle Scholar
  29. 29.
    Hsiao SH, Wang HM, Chou JS, Guo WJ, Tsai TH (2012). J Polym Res 19:9902CrossRefGoogle Scholar
  30. 30.
    Yamazaki N, Matsumoto M, Higashi F (1975). J Polym Sci Polym Chem Ed 13:1373CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical Engineering and BiotechnologyNational Taipei University of TechnologyTaipeiTaiwan

Personalised recommendations