Journal of Polymer Research

, 25:54 | Cite as

Preparation and characterization of poly(ethylene carbonate)/poly(lactic acid) blends

ORIGINAL PAPER
  • 202 Downloads
Part of the following topical collections:
  1. Topical Collection on Bio-Based Polymers

Abstract

Poly(ethylene carbonate)/poly(lactic acid) blends were successfully prepared by means of a solution film-casting method, and their physicochemical properties were investigated. PEC/PLA blends exhibit partial miscibility and are characterized by the interaction of the ester and carbonic ester groups. One such interaction is between partial charges in –C–O– in –O–C=O of PLA and the carbonyl –C=O of PEC. Another is between –C–O– in –O–C=O of PLA and –C–O– in –CH2–O– of PEC. The value of Tg varies by more than 10 °C across the blends. PEC does not significantly influence the melting temperature of neat PLA, but non-spherical spherulites are formed in PEC-rich blends, whereas the spherulites are spherical with an average size of 30 μm in PLA-rich blends. Crystallization of PLA is influenced by the addition of flexible PEC and by the proportion of PLA in the blends. Interestingly, addition of at least 10 wt% PLA increased Tg, with a crystallinity, Xc of 47% and better thermal degradation properties, with the temperature at 5 wt% weight loss (Td5) more than 30 °C higher than for neat PEC.

Keywords

Poly(ethylene carbonate) Poly(lactic acid) Polymer blend Biodegradable 

Supplementary material

10965_2018_1451_MOESM1_ESM.docx (24 kb)
ESM 1 (DOCX 24.2 kb)
10965_2018_1451_MOESM2_ESM.docx (542 kb)
ESM 2 (DOCX 541 kb)

References

  1. 1.
    Inoue S, Koinuma H, Tsuruta T (1969) J Polym Sci Part B: Polym Lett 7:287–292Google Scholar
  2. 2.
    Murat A, Fritz N, Siegfried B, Georg HS (1997). J Control Release 49:263–276CrossRefGoogle Scholar
  3. 3.
    Dadsetan M, Christenson EM, Unger F, Ausborn M, Kissel T, Hiltner A, Anderson JM (2003). J Control Release 93:259–270CrossRefGoogle Scholar
  4. 4.
    Unger F, Westedt U, Hanefeld P, Wombacher R, Zimmermann S, Greiner A, Ausborn M, Kissel T (2007). J Control Release 117:312–321CrossRefGoogle Scholar
  5. 5.
    Bian H, Zhou S, Liang X, Li Q, Han W (2012). Prog Nat Sci: Mater Int 22(4):295–302CrossRefGoogle Scholar
  6. 6.
    Tominaga Y, Nanthana V (2012) Tohyama. Polym J 44:1155–1158CrossRefGoogle Scholar
  7. 7.
    Tominaga Y, Yamazaki K (2014). Chem Commun 50:4448–4450CrossRefGoogle Scholar
  8. 8.
    Kimura K, Hassoun J, Panero S, Scrosati B, Tominaga Y (2015). Ionics 21:895–900CrossRefGoogle Scholar
  9. 9.
    Kimura K, Matsumoto H, Hassoun J, Panero S, Scrosati B, Tominaga Y (2015). Electrochim Acta 175:134–140CrossRefGoogle Scholar
  10. 10.
    Tominaga Y, Yamazaki K, Nanthana VJ (2015). J Electrochem Soc 162:A3133–A3136CrossRefGoogle Scholar
  11. 11.
    Kimura K, Yajima M, Tominaga Y (2016). Electrochem Commun 66:44–46CrossRefGoogle Scholar
  12. 12.
    Kimura K, Motomatsu J, Tominaga Y (2016). J Phys Chem C 120:12385–12391CrossRefGoogle Scholar
  13. 13.
    Motomatsu J, Kodama H, Furukawa T, Tominaga Y (2015). Macromol Chem Phys 216:1660–1665CrossRefGoogle Scholar
  14. 14.
    Dixon DD, Ford ME (1977) US Patent 4,142,021Google Scholar
  15. 15.
    Darensbourg DJ (2007). Chem Rev 107:2388–2410CrossRefGoogle Scholar
  16. 16.
    Schoenheider CJ (2005) U.S Patent US 6,864,346 B2Google Scholar
  17. 17.
    Anderson KS, Schreck KM, Hillmyer MA (2008). Polym Rev 48:85–108CrossRefGoogle Scholar
  18. 18.
    Liu H, Zhang J (2011). J Polym Sci B Polym Phys 49:1051–1083CrossRefGoogle Scholar
  19. 19.
    Wang M, Wu Y, Li YD, Zeng JB (2017). Polym Rev.  https://doi.org/10.1080/15583724.2017.1287726
  20. 20.
    Ren J, Liu Z, Ren T (2007). Polym Polym Compos 15(7):545–552Google Scholar
  21. 21.
    Vilay V, Mariatti M, Ahmad Z, Pasomsouk K, Todo MJ (2009). J Appl Polym Sci 114:1784CrossRefGoogle Scholar
  22. 22.
    Hashima K, Nishitsuji S, Inoue T (2010). Polymer 51:3934–3939CrossRefGoogle Scholar
  23. 23.
    Zhao G, Feng Y, Jiang W (2013). Polym Eng Sci 53(2):389–396CrossRefGoogle Scholar
  24. 24.
    Sheth M, Kumar RA, Dave V, Gross RA, McCarthy SP (1997). J Appl Polym Sci 66(8):1495–1505CrossRefGoogle Scholar
  25. 25.
    Blumm E, Owen A (1995). Polymer 36(21):4077–4081CrossRefGoogle Scholar
  26. 26.
    Focarete ML, Scandola M, Dobrzynski P, Kowalczuk M (2002). Macromolecules 35(22):8472–8477CrossRefGoogle Scholar
  27. 27.
    Ferreira BMP, Zavaglia CAC, Duek EAR (2002). J Appl Polym Sci 86:2898–2906CrossRefGoogle Scholar
  28. 28.
    Bhatia A, Gupta R, Bhattacharya S, Choi H (2007). Korea Aust Rheol J 19(3):125–131Google Scholar
  29. 29.
    Dell’Erba R, Groeninckx G, Maglio G, Malinconico M, Migliozzi A (2001). Polymer 42(18):7831–7840CrossRefGoogle Scholar
  30. 30.
    Chen CC, Chueh JY, Tseng H, Huang HM, Lee SY (2003). Biomaterials 24:1167–1173CrossRefGoogle Scholar
  31. 31.
    Semba T, Kitagawa K, Ishiaku US, Hamada H (2006). J Appl Polym Sci 101(3):1816–1825CrossRefGoogle Scholar
  32. 32.
    Yeh JT, Wu CJ, Tsou CH, Chai WL, Chow JD, Huang CY (2009). Polym-Plast Technol Eng 48(6):571–578CrossRefGoogle Scholar
  33. 33.
    Lv Q, Wu D, Xie H, Peng S, Chen Y, Xu C (2016). RSC Adv 6:37721–37730CrossRefGoogle Scholar
  34. 34.
    Lut AS, Gasmi S (2016). J Mater Sci 51:4670–4681CrossRefGoogle Scholar
  35. 35.
    Mi OO, Seong HK (2016). Polymer (Korea) 40(3):498–503CrossRefGoogle Scholar
  36. 36.
    Righetti MC, Gazzano M, Di Lorenzo ML, Androsch R (2015). Eur Polym J 70:215–220CrossRefGoogle Scholar
  37. 37.
    Chen D, Li J, Ren J (2011). J Polym Environ 19:574–581CrossRefGoogle Scholar
  38. 38.
    Nam JY, Ray SS, Okamoto M (2003). J Am Chem Soc:7126–7131Google Scholar
  39. 39.
    Lim LT, Auras R, Rubino M (2008). Prog Polym Sci 33(8):820–852CrossRefGoogle Scholar
  40. 40.
    Nielsen LE (1974) Mechanical properties of polymers and composites. Marcel Dekker, New York, pp 16–27Google Scholar
  41. 41.
    Roe RJ (1988) In: encyclopedia of polymer science and engineering2nd edn. Wiley, New York, pp 531–544Google Scholar
  42. 42.
    Lee WA, Rutherford RA (1975) In: Brandrup J, Immergut EH (eds) Polymer Handbook2nd edn. Wiley, New York, pp III–139Google Scholar
  43. 43.
    Roberta MF, Jenekhe SA (1991). Macromolecules 24:3142–3146CrossRefGoogle Scholar
  44. 44.
    Jenekhe SA, Roberts MF (1993). Macromolecules 26:4981–4983CrossRefGoogle Scholar
  45. 45.
    Yao M, Deng H, Mai F, Wang K, Zhang Q, Zhang F, Chen F, Fu Q (2011). Express Polym Lett 5(11):937–949CrossRefGoogle Scholar
  46. 46.
    Zhai W, Ko Y, Zhum W (2009). Int J Mol Sci 10:5381–5397CrossRefGoogle Scholar
  47. 47.
    Chen CY, Yang CF, Jeng US, Su AC (2014). Macromolecules 47:5144–5151CrossRefGoogle Scholar
  48. 48.
    Kawai T, Rahman N, Matsuba G, Nishida K, Kanaya T, Nakano M, Okamoto H, Kawada J, Usuki A, Honma N, Nakajima K, Matsuda M (2007). Macromolecules 40(26):9463–9469CrossRefGoogle Scholar
  49. 49.
    Li J, Xiao P, Li H, Zhang Y, Xue F, Luo B, Huang S, Shang Y, Wen H, de Claville Christiansen J, Yu D, Jiang S (2015). Polym Chem 6:3988–4002CrossRefGoogle Scholar
  50. 50.
    Pan P, Zhu B, Kai W, Dong T, Inoue Y (2008). J Appl Polym Sci 107:54–62CrossRefGoogle Scholar
  51. 51.
    Androsch R, Schick C, Di Lorenzo ML (2013). Macromolecules 46:6048–6056CrossRefGoogle Scholar
  52. 52.
    Inoue S, Tsuruta T, Takada T, Miyazaki N, Kambe M, Takaoka T (1975). J Appl Polym Symp 26:257–267Google Scholar
  53. 53.
    Dixon DD, Ford ME, Mantell GJ (1980). J Polym Sci: Polym Lett 18:131–134Google Scholar
  54. 54.
    Ma X, Yu J, Wang N (2006). J Polym Sci: B Polym Phys 44:94–101CrossRefGoogle Scholar
  55. 55.
    Di Lorenzo ML, Rubino P, Cocca M (2013) Europ Polym J 49:3309–3317Google Scholar
  56. 56.
    Run MT, Li X, Yao CG (2010). Front Mater Sci Chin 4(1):78–83CrossRefGoogle Scholar
  57. 57.
    Södergård A, Näsman JH (1996). Ind Eng Chem Res 35:732–735CrossRefGoogle Scholar
  58. 58.
    Zeng C, Zhang NW, Feng SQ, Ren J (2013). J Therm Anal Calorim 111:633–646CrossRefGoogle Scholar
  59. 59.
    Phuong VT, Coltelli MB, Cinelli P, Cifelli M, Verstichel S, Lazzeri A (2014). Polymer 55:4498–4513CrossRefGoogle Scholar
  60. 60.
    Peter JH (2002) Principle of thermal analysis and calorimetry. Royal Society of Chemistry, London, pp 12–13Google Scholar
  61. 61.
    Shirahase T, Komatsu Y, Tominaga Y, Asai S, Sumita M (2006). Polymer 47:4839–4844CrossRefGoogle Scholar
  62. 62.
    Qirui S, Tizazu M, Manjusri M, Amar KM (2016). J Polym Environ 24:23–36CrossRefGoogle Scholar
  63. 63.
    Kuo SW, Huang CF, Chang FC (2001). J Polym Sci B Polym Phys 39:1348–1359CrossRefGoogle Scholar
  64. 64.
    Fei B, Chen C, Peng SW, Zhao XJ, Wang XH, Dong LS (2004). Polym Int 53:2092–2098CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate School of Bio-Applications and Systems EngineeringTokyo University of Agriculture and TechnologyTokyoJapan
  2. 2.Faculty of Chemical EngineeringUniversiti Teknologi MARAShah AlamMalaysia

Personalised recommendations