Skip to main content
Log in

Thermoplastic starch and poly(ε-caprolactone) blends: morphology and mechanical properties as a function of relative humidity

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This paper describes the elaboration and characterization of biodegradable films from thermoplastic starch (TPS) and poly(ε-caprolactone) (PCL) blends. The films were obtained by a single screw extrusion process. Two PCLs of different molecular weights (37,000 and 50,000 g.mol−1, referred as PCL37 and PCL50) have been tested. Phase distribution of PCL and thermoplastic starch (TPS) has been characterized by FTIR, DSC and SEM. For the blend with PCL37, material surface is enriched with PCL, whereas in the blend with PCL50, TPS and PCL phases are more homogeneously distributed. Evolution of crystalline structure of the different formulations has been studied by X-ray diffraction, and mechanical properties by tensile tests. Maximal deformation of TPS/PCL blends is smaller than that of TPS, attesting the lack of compatibility between both polymers. Blending with PCL modifies the crystalline structure of TPS. Water resistance of the blends has been characterized by water sorption and water contact angle measurements. The decrease in water absorption for the blends was attributed to the decrease of starch content. At the surface of the material, water resistance of TPS/PCL50 blends is improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Avérous L (2004) J Macromol Sci C Polym Rev 44:231–274

    Article  Google Scholar 

  2. Hongsheng L, Fengwei X, Long Y, Ling C, Lin L (2009) Prog Polym Sci 34:1348–1368

    Article  Google Scholar 

  3. Della Valle G, Kozlowski A, Colonna P, Tayeb J (1989) Lebensm Wiss Technol 22:279–286

    Google Scholar 

  4. Li G, Favis BD (2010) Macromol Chem Phys 211:321–333

    Article  CAS  Google Scholar 

  5. Carvalho AJF (2013) In: Ebnesajjad S (ed) Handbook of biopolymers and biodegradable plastics. William Andrew Publishing, Boston

    Google Scholar 

  6. Van Tuil R, Fowler P, Lawther M, Weber CJ (2000) In: Weber CJ (ed) Biobased packaging materials for the food industry: status and perspectives. KVL, Frederiksberg

    Google Scholar 

  7. Dole P, Joly C, Espuche E, Alric I, Gontard N (2004) Carbohydr Polym 58:335–343

    Article  CAS  Google Scholar 

  8. Follain N, Joly C, Dole P, Bliard C (2005) J Appl Polym Sci 97:1783–1794

    Article  CAS  Google Scholar 

  9. Yu L, Dean K, Li L (2006) Prog Polym Sci 31:576–602

    Article  CAS  Google Scholar 

  10. Huneault MA, Li HJ (2012) Appl Polym Sci 126:E96–E108

    Article  CAS  Google Scholar 

  11. Senna MM, El-Shahat HA, El-Naggar AWM (2011) J Polym Res 18:763–771

    Article  CAS  Google Scholar 

  12. Chaléat CM, Halley PJ, Truss RW (2012) Polym Degrad Stab 97:1930–1939

    Article  Google Scholar 

  13. Yu F, Prashantha K, Soulestin J, Lacrampe MF, Krawczak P (2013) Carbohydr Polym 91:253–261

    Article  CAS  Google Scholar 

  14. Dean K, Yu L, Bateman S, Wu DY (2007) J Appl Polym Sci 103:802–811

    Article  CAS  Google Scholar 

  15. Myllymaki O, Myllarinen P, Forssel P, Suortti T, Lahteenkorva K, Ahvenainen R, Poutanen K (1998) Packag Technol Sci 11:265–274

    Article  CAS  Google Scholar 

  16. Goldberg D (1995) J Polym Environ 3:61–67

    Article  CAS  Google Scholar 

  17. Woodruff MA, Hutmacher DW (2010) Prog Polym Sci 35:1217–1256

    Article  CAS  Google Scholar 

  18. Nien YH, Shih CY, Yang CY, Lu CJ, Ye QX (2013) J Polym Res 20:166–171

    Article  Google Scholar 

  19. Chiono V, Vozzi G, D’Acunto M, Brinzi S, Domenici C, Vozzi F, Ahluwalia A, Barbani N, Giusti P, Ciardelli G (2009) Mater Sci Eng C 29:2174–2187

    Article  CAS  Google Scholar 

  20. Averous L, Moro L, Dole P, Fringant C (2000) Polymer 41:4157–4167

    Article  CAS  Google Scholar 

  21. Belard L, Dole P, Averous L (2009) Polym Eng Sci 49:1177–1186

    Article  CAS  Google Scholar 

  22. Lee HC (2007) Physio-chemistry and rheology of Australian lentil flour and starch, and their implications for extrusion, Ph.D Thesis, University of New South Wales, Sydney, Australia

  23. Stevenson DG, Biswas A, Jane JL, Inglett GE (2007) Carbohydr Polym 67:21–31

    Article  CAS  Google Scholar 

  24. Lourdin D, Bizot H, Colonna P (1997) J Appl Polym Sci 63:1047–1053

    Article  CAS  Google Scholar 

  25. Godbillot L, Dole P, Joly C, Rogé B, Mathlouthi M (2006) Food Chem 96:380–386

    Article  CAS  Google Scholar 

  26. Greenspan L (1977) J Res Natl Bur Stand A Phys Chem 81A:89–96

    Article  Google Scholar 

  27. Park GS (1986) In: Bungay PM, Lonsdale HK, Pinho MN (eds) Synthetic membranes: science, engineering and applications. Springer, Netherlands

  28. Bessadok A, Langevin D, Gouanvé F, Chappey C, Roudesli S, Marais S (2009) Carbohydr Polym 76:74–85

    Article  CAS  Google Scholar 

  29. Masclaux C, Gouanve F, Espuche E (2010) J Membr Sci 363:221–231

    Article  CAS  Google Scholar 

  30. Alix S, Philippe E, Bessadok A, Lebrun L, Morvan C, Marais S (2009) Bioresour Technol 100:4742–4749

    Article  CAS  Google Scholar 

  31. Owens DK, Wendt RC (1969) J Appl Polym Sci 13:1741–1747

    Article  CAS  Google Scholar 

  32. Leblanc N, Saiah R, Beucher E, Gattin R, Castandet M, Saiter JM (2008) Carbohydr Polym 73:548–557

    Article  CAS  Google Scholar 

  33. Rappenecker G, Zugenmaier P (1981) Carbohydr Res 89:11–19

    Article  CAS  Google Scholar 

  34. Winter WT, Sarko A (1974) Biopolymers 13:1447–1460

    Article  CAS  Google Scholar 

  35. Mercier C, Charbonniere R, Grebaut J, de la Gueriviere JF (1980) Cereal Chem 57:4–9

    CAS  Google Scholar 

  36. Van Soest J, Hulleman S, de Wit D, Vliegenthart J (1996) Ind Crop Prod 5:11–22

    Article  Google Scholar 

  37. Lee K, Knight P, Chung T, Mather P (2008) Macromolecules 41:4730–4738

    Article  CAS  Google Scholar 

  38. Seker M (2004) Int J Food Sci Technol 39:1053–1060

    Article  CAS  Google Scholar 

  39. Wang Y, Rodriguez-Perez MA, Reis RL, Mano JF (2005) Macromol Mater Eng 290:792–801

    Article  CAS  Google Scholar 

  40. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  41. Al-Muhtaseb AH, McMinn WAM, Magee TRA (2004) J Food Eng 61:297–307

    Article  Google Scholar 

  42. Ayadi F, Dole P (2011) Carbohydr Polym 84:872–880

    Article  CAS  Google Scholar 

  43. Chen H, Tang T, Amirfazli A (2012) Colloids Surf A 408:17–21

    Article  CAS  Google Scholar 

  44. Eaton PJ, Graham P, Smith JR, Smart JD, Nevell TG, Tsibouklis J (2000) Langmuir 16:7887–7890

    Article  CAS  Google Scholar 

  45. Shin BY, Lee S, Shin YS, Balakrishnan S, Narayan R (2004) Polym Eng Sci 44:1429–1438

    Article  CAS  Google Scholar 

  46. Chaléat CM, Halley PJ, Truss RW (2008) Carbohydr Polym 71:535–543

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Region Haute Normandie (France) for financial support through its research network VATA (AMI-AMIE project). We also thank the GPM UMR 6634 (University of Rouen) for XRD and SEM experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Terrié or B. Youssef.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahieu, A., Terrié, C., Agoulon, A. et al. Thermoplastic starch and poly(ε-caprolactone) blends: morphology and mechanical properties as a function of relative humidity. J Polym Res 20, 229 (2013). https://doi.org/10.1007/s10965-013-0229-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0229-y

Keywords

Navigation