Pubertal Status and Age are Differentially Associated with Inflammatory Biomarkers in Female and Male Adolescents

  • Allison Stumper
  • Daniel P. Moriarity
  • Christopher L. Coe
  • Lauren M. Ellman
  • Lyn Y. Abramson
  • Lauren B. AlloyEmail author


A better understanding of the maturational correlates of inflammatory activity during adolescence is needed to more appropriately study both normal and abnormal development. Inflammation is the immune system’s first response to infection, injury, or psychological stress, and it has been shown to be elevated in individuals with both physical and psychological conditions. This study examined unique associations between (1) pubertal status and inflammatory biomarkers, and (2) age and inflammatory biomarkers, and whether these relationships differed by sex in a diverse sample of 155 adolescents (54.2% female, 45.8% male; Mage = 16.22) from a northeastern city in the US. A more advanced pubertal status was uniquely associated with lower levels of tumor necrosis factor alpha (TNF-α) and interleukin-8 (IL-8). Chronological age was uniquely associated with lower IL-8 levels. The association between pubertal status and C-reactive protein (CRP) levels differed by sex: more mature females had higher CRP, whereas pubertal status and CRP were not significantly associated in males. These findings highlight an important relation between pubertal development and inflammatory activity during adolescence.


Adolescence Puberty Age Sex Inflammation 



This research was supported by National Institute of Mental Health Grants MH079369 and MH101168 to Lauren B. Alloy.

Authors’ Contributions

A.S. generated hypotheses, created the database, ran and interpreted analyses, and drafted the manuscript; D.P.M. aided in data analysis and provided feedback on the manuscript; C.L.C. conducted the assays and provided substantial feedback on all drafts of the manuscript; L.M.E. provided substantial feedback on all drafts of the manuscript; L.Y.A. helped write the grant that funded the study, and provided feedback on the manuscript; L.B.A. helped design the original study and write the grant that funded the study, participated in the design and coordination of this study, and provided feedback on all drafts of the manuscript. All authors read and approved the final manuscript.


This research was supported by National Institute of Mental Health Grants MH101168 and MH079369 to L.B.A.

Data Sharing and Declaration

The datasets generated and/or analyzed during the current study are not publicly available but may be available from the corresponding author on reasonable request.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

The Temple University Institutional Review Board approved the protocol (IRB protocol #6844).

Informed Consent

Written informed consent was collected from all study participants after explaining their role in the study and before starting data collection.


  1. Abbassi, V. (1998). Growth and normal puberty. Pediatrics, 102(Suppl. 3), 507–511.Google Scholar
  2. Aiken, L. S., West, S. G., & Reno, R. R. (1991). Multiple regression: Testing and interpreting interactions. Sage, California.Google Scholar
  3. Alloy, L. B., Black, S. K., Young, M. E., Goldstein, K. E., Shapero, B. G., Stange, J. P., & Abramson, L. Y. (2012). Cognitive vulnerabilities and depression versus other psychopathology symptoms and diagnoses in early adolescence. Journal of Clinical Child and Adolescent Psychology, 41(5), 539–560.Google Scholar
  4. Alloy, L. B., Hamilton, J. L., Hamlat, E. J., & Abramson, L. Y. (2016). Pubertal development, emotion regulatory styles, and the emergence of sex differences in internalizing disorders and symptoms in adolescence. Clinical Psychological Science, 4, 867–881.Google Scholar
  5. Angold, A., Costello, E. J., Erkanli, A., & Worthman, C. M. (1999). Pubertal changes in hormone levels and depression in girls. Psychological Medicine, 29(5), 1043–1053.Google Scholar
  6. Angold, A., Costello, E. J., & Worthman, C. M. (1998). Puberty and depression: the roles of age, pubertal status and pubertal timing. Psychological Medicine, 28(1), 51–61.Google Scholar
  7. Beeson, P. B. (1994). Age and sex associations of 40 autoimmune diseases. American Journal of Medicine, 96, 457–462.Google Scholar
  8. Bell, J. A., Kivimäki, M., Bullmore, E. T., Steptoe, A., Bullmore, E., Vértes, P. E., & Hume, D. (2017). Repeated exposure to systemic inflammation and risk of new depressive symptoms among older adults. Translational Psychiatry, 7(8), e1208.Google Scholar
  9. Breen, E. C., Reynolds, S. M., Cox, C., Jacobson, L. P., Magpantay, L., Mulder, C. B., & Norris, P. J. (2011). Multisite comparison of high-sensitivity multiplex cytokine assays. Clinical and Vaccine Immunology, 18(8), 1229–1242.Google Scholar
  10. Bulik, C. M. (2002). Eating disorders in adolescents and young adults. Child and Adolescent Psychiatric Clinics of North America, 11(2), 201–218.Google Scholar
  11. Carroll, J. F., Fulda, K. G., Chiapa, A. L., Rodriquez, M., Phelps, D. R., Cardarelli, K. M., & Cardarelli, R. (2009). Impact of race/ethnicity on the relationship between visceral fat and inflammatory biomarkers. Obesity, 17(7), 1420–1427.Google Scholar
  12. Casimir, G. J., Heldenbergh, F., Hanssens, L., Mulier, S., Heinrichs, C., Lefevre, N., & Duchateau, J. (2010). Gender differences and inflammation: an in vitro model of blood cells stimulation in prepubescent children. Journal of inflammation, 7(1), 28.Google Scholar
  13. Elenkov, I. J., & Chrousos, G. P. (2002). Stress hormones, proinflammatory and antiinflammatory cytokines, and autoimmunity. Annals of the New York Academy of Sciences, 966(1), 290–303.Google Scholar
  14. Cohen, H. J., Pieper, C. F., Harris, T., Rao, K. M. K., & Currie, M. S. (1997). The association of plasma IL-6 levels with functional disability in community-dwelling elderly. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 52(4), M201–M208.Google Scholar
  15. Cook, R. T. (1998). Alcohol abuse, alcoholism, and damage to the immune system—a review. Alcoholism: Clinical and Experimental Research, 22(9), 1927–1942.Google Scholar
  16. Corcoran, M. P., Meydani, M., Lichtenstein, A. H., Schaefer, E. J., Dillard, A., & Lamon-Fava, S. (2010). Sex hormone modulation of proinflammatory cytokine and CRP expression in macrophages from older men and postmenopausal women. The Journal of Endocrinology, 206(2), 217.Google Scholar
  17. Curtis, A. C. (2015). Defining adolescence. Journal of Adolescent and Family Health, 7(2), 2.Google Scholar
  18. Cutolo, M., & Wilder, R. L. (2000). Different roles for androgens and estrogens in the susceptibility to autoimmune rheumatic diseases. Rheumatic Disease Clinics of North America, 26(4), 825–839.Google Scholar
  19. DaSilva, J. A. (1995). Sex hormones, glucocorticoids and autoimmunity: facts and hypotheses. Annals of the Rheumatic Diseases, 54(1):6–16.Google Scholar
  20. Dabitao, D., Margolick, J. B., Lopez, J., & Bream, J. H. (2011). Multiplex measurement of proinflammatory cytokines in human serum: comparison of the Meso Scale Discovery electrochemiluminescence assay and the Cytometric Bead Array. Journal of Immunological Methods, 372(1–2), 71–77.Google Scholar
  21. Dandona, P., Aljada, A., & Bandyopadhyay, A. (2004). Inflammation: the link between insulin resistance, obesity and diabetes. Trends in Immunology, 25(1), 4–7.Google Scholar
  22. Dantzer, R., & Kelley, K. W. (2007). Twenty years of research on cytokine-induced sickness behavior. Brain, Behavior, and Immunity, 21(2), 153–160.Google Scholar
  23. Day, F. R., Elks, C. E., Murray, A., Ong, K. K., & Perry, J. R. (2015). Puberty timing associated with diabetes, cardiovascular disease and also diverse health outcomes in men and women: the UK Biobank study. Scientific Reports, 5, 11208.Google Scholar
  24. De Ferranti, S. D., Gauvreau, K., Ludwig, D. S., Newburger, J. W., & Rifai, N. (2006). Inflammation and changes in metabolic syndrome abnormalities in US adolescents: findings from the 1988–1994 and 1999–2000 National Health and Nutrition Examination Surveys. Clinical Chemistry, 52(7), 1325–1330.Google Scholar
  25. Deardorff, J., Hayward, C., Wilson, K. A., Bryson, S., Hammer, L. D., & Agras, S. (2007). Puberty and gender interact to predict social anxiety symptoms in early adolescence. Journal of Adolescent Health, 41(1), 102–104.Google Scholar
  26. Dorn, L. D., Dahl, R. E., Woodward, H. R., & Biro, F. (2006). Defining the boundaries of early adolescence: A user’s guide to assessing pubertal status and pubertal timing in research with adolescents. Applied Developmental Science, 10(1), 30–56.Google Scholar
  27. Drabick, D. A., & Kendall, P. C. (2010). Developmental psychopathology and the diagnosis of mental health problems among youth. Clinical Psychology: Science and Practice, 17(4), 272–280.Google Scholar
  28. Fox, H. C., D’sa, C., Kimmerling, A., Siedlarz, K. M., Tuit, K. L., Stowe, R., & Sinha, R. (2012). Immune system inflammation in cocaine dependent individuals: implications for medications development. Human Psychopharmacology: Clinical and Experimental, 27(2), 156–166.Google Scholar
  29. Gabay, C. (2006). Interleukin-6 and chronic inflammation. Arthritis Research & Therapy, 8(2), S3.Google Scholar
  30. Gater, R., Tansella, M., Korten, A., Tiemens, B. G., Mavreas, V. G., & Olatawura, M. O. (1998). Sex differences in the prevalence and detection of depressive and anxiety disorders in general health care settings: report from the World Health Organization Collaborative Study on Psychological Problems in General Health Care. Archives of General Psychiatry, 55(5), 405–413.Google Scholar
  31. Graber, J. A., Lewinsohn, P. M., Seeley, J. R., & Brooks-Gunn, J. (1997). Is psychopathology associated with the timing of pubertal development? Journal of the American Academy of Child & Adolescent Psychiatry, 36(12), 1768–1776.Google Scholar
  32. Goldsmith, D. R., Rapaport, M. H., & Miller, B. J. (2016). A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Molecular Psychiatry, 21(12), 1696.Google Scholar
  33. Hankin, B. L., Abramson, L. Y., Moffitt, T. E., Silva, P. A., McGee, R., & Angell, K. E. (1998). Development of depression from preadolescence to young adulthood: emerging gender differences in a 10-year longitudinal study. Journal of Abnormal Psychology, 107(1), 128.Google Scholar
  34. Hänsel, A., Hong, S., Camara, R. J., & Von Kaenel, R. (2010). Inflammation as a psychophysiological biomarker in chronic psychosocial stress. Neuroscience & Biobehavioral Reviews, 35(1), 115–121.Google Scholar
  35. Hayward, C., Gotlib, I. H., Schraedley, P. K., & Litt, I. F. (1999). Ethnic differences in the association between pubertal status and symptoms of depression in adolescent girls. Journal of Adolescent Health, 25(2), 143–149.Google Scholar
  36. Holmbeck, G. N. (2002). A developmental perspective on adolescent health and illness: An introduction to the special issues. Journal of pediatric psychology, 27(5), 409–416.Google Scholar
  37. Irwin, M. R., & Cole, S. W. (2011). Reciprocal regulation of the neural and innate immune systems. Nature Reviews Immunology, 11(9), 625.Google Scholar
  38. Jacobson, D. L., Gange, S. J., Rose, N. R., & Graham, N. M. (1997). Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clinical immunology and immunopathology, 84(3), 223–243.Google Scholar
  39. Janeway, C. A. (1989). Approaching the asymptote? Evolution and revolution in immunology. In Cold Spring Harbor symposia on quantitative biology (Vol. 54, pp. 1–13). Cold Spring Harbor Laboratory Press, New York.Google Scholar
  40. Kendall-Tackett, K. (2009). Psychological trauma and physical health: A psychoneuroimmunology approach to etiology of negative health effects and possible interventions. Psychological Trauma: Theory, Research, Practice, And Policy, 1(1), 35.Google Scholar
  41. Khera, A., McGuire, D. K., Murphy, S. A., Stanek, H. G., Das, S. R., Vongpatanasin, W., & de Lemos, J. A. (2005). Race and gender differences in C-reactive protein levels. Journal of the American College of Cardiology, 46(3), 464–469.Google Scholar
  42. Kessler, R. C., Avenevoli, S., & Merikangas, K. R. (2001). Mood disorders in children and adolescents: an epidemiologic perspective. Biological Psychiatry, 49(12), 1002–1014.Google Scholar
  43. Kiecolt-Glaser, J. K., McGuire, L., Robles, T. F., & Glaser, R. (2002). Emotions, morbidity, and mortality: new perspectives from psychoneuroimmunology. Annual review of psychology, 53(1), 83–107.Google Scholar
  44. Killen, J. D., Hayward, C., Litt, I., Hammer, L. D., Wilson, D. M., Miner, B., & Shisslak, C. (1992). Is puberty a risk factor for eating disorders? American Journal of Diseases of Children, 146(3), 323–325.Google Scholar
  45. Kinney, D. K., Hintz, K., Shearer, E. M., Barch, D. H., Riffin, C., Whitley, K., & Butler, R. (2010). A unifying hypothesis of schizophrenia: abnormal immune system development may help explain roles of prenatal hazards, post-pubertal onset, stress, genes, climate, infections, and brain dysfunction. Medical Hypotheses, 74(3), 555–563.Google Scholar
  46. Klein, S. L., & Flanagan, K. L. (2016). Sex differences in immune responses. Nature Reviews Immunology, 16(10), 626.Google Scholar
  47. Kong, G., Smith, A. E., McMahon, T. J., Cavallo, D. A., Schepis, T. S., Desai, R. A., ... & Krishnan-Sarin, S. (2013). Pubertal status, sensation-seeking, impulsivity, and substance use in high-school-aged boys and girls. Journal of Addiction Medicine, 7(2), 116.Google Scholar
  48. Leon, G. R., Fulkerson, J. A., Perry, C. L., & Early-Zald, M. B. (1995). Prospective analysis of personality and behavioral vulnerabilities and gender influences in the later development of disordered eating. Journal of abnormal psychology, 104(1), 140.Google Scholar
  49. Lewinsohn, P. M., Gotlib, I. H., Lewinsohn, M., Seeley, J. R., & Allen, N. B. (1998). Gender differences in anxiety disorders and anxiety symptoms in adolescents. Journal of Abnormal Psychology, 107(1), 109.Google Scholar
  50. Lewinsohn, P. M., Seeley, J. R., Buckley, M. E., & Klein, D. N. (2002). Bipolar disorder in adolescence and young adulthood. Child and Adolescent Psychiatric Clinics of North America, 11(3), 461–475.Google Scholar
  51. Lewinsohn, P. M., Striegel-Moore, R. H., & Seeley, J. R. (2000). Epidemiology and natural course of eating disorders in young women from adolescence to young adulthood. Journal of the American Academy of Child & Adolescent Psychiatry, 39(10), 1284–1292.Google Scholar
  52. Linton, P. J., & Dorshkind, K. (2004). Age-related changes in lymphocyte development and function. Nature immunology, 5(2), 133.Google Scholar
  53. Maahs, D. M., West, N. A., Lawrence, J. M., & Mayer-Davis, E. J. (2010). Epidemiology of type 1 diabetes. Endocrinology and Metabolism Clinics of North America, 39(3), 481–497.Google Scholar
  54. Malkin, C. J., Pugh, P. J., Jones, R. D., Kapoor, D., Channer, K. S., & Jones, T. H. (2004). The effect of testosterone replacement on endogenous inflammatory cytokines and lipid profiles in hypogonadal men. The Journal of Clinical Endocrinology & Metabolism, 89(7), 3313–3318.Google Scholar
  55. Mendle, J. (2014). Beyond pubertal timing: New directions for studying individual differences in development. Current Directions in Psychological Science, 23(3), 215–219.Google Scholar
  56. Mendle, J., Harden, K. P., Brooks-Gunn, J., & Graber, J. A. (2010). Development’s tortoise and hare: pubertal timing, pubertal tempo, and depressive symptoms in boys and girls. Developmental Psychology, 46(5), 1341.Google Scholar
  57. Merikangas, K. R., He, J. P., Burstein, M., Swanson, S. A., Avenevoli, S., Cui, L., & Swendsen, J. (2010). Lifetime prevalence of mental disorders in US adolescents: results from the National Comorbidity Survey Replication–Adolescent Supplement (NCS-A). Journal of the American Academy of Child & Adolescent Psychiatry, 49(10), 980–989.Google Scholar
  58. Mills, N. T., Scott, J. G., Wray, N. R., Cohen‐Woods, S., & Baune, B. T. (2013). Research review: the role of cytokines in depression in adolescents: a systematic review. Journal of Child Psychology and Psychiatry, 54(8), 816–835.Google Scholar
  59. Munkholm, K., Vinberg, M., & Kessing, L. V. (2013). Cytokines in bipolar disorder: a systematic review and meta-analysis. Journal of Affective Disorders, 144(1-2), 16–27.Google Scholar
  60. Muthén, L. K., & Muthén, B. O. (2015). Mplus user’s guide (1998–2015). Muthén & Muthén: Los Angeles, CA.Google Scholar
  61. Moudgil, K. D., & Choubey, D. (2011). Cytokines in autoimmunity: role in induction, regulation, and treatment. Journal of Interferon & Cytokine Research, 31(10), 695–703.Google Scholar
  62. O’Mahony, L., Holland, J., Jackson, J., Feighery, C., Hennessy, T. P. J., & Mealy, K. (1998). Quantitative intracellular cytokine measurement: age-related changes in proinflammatory cytokine production. Clinical and Experimental Immunology, 113(2), 213.Google Scholar
  63. Patton, G. C., Hibbert, M. E., Carlin, J., Shao, Q., Rosier, M., Caust, J., & Bowes, G. (1996). Menarche and the onset of depression and anxiety in Victoria, Australia. Journal of Epidemiology & Community Health, 50(6), 661–666.Google Scholar
  64. Patton, G. C., McMorris, B. J., Toumbourou, J. W., Hemphill, S. A., Donath, S., & Catalano, R. F. (2004). Puberty and the onset of substance use and abuse. Pediatrics, 114(3), e300–e306.Google Scholar
  65. Payne, J. B., Reinhardt, R. A., Masada, M. P., DuBois, L. M., & Allison, A. C. (1993). Gingival crevicular fluid IL‐8: correlation with local IL‐1β levels and patient estrogen status. Journal of Periodontal Research, 28(6), 451–453.Google Scholar
  66. Pepys, M. B., & Hirschfield, G. M. (2003). C-reactive protein: a critical update. The Journal of Clinical Investigation, 111(12), 1805–1812.Google Scholar
  67. Petersen, A. C., Crockett, L., Richards, M., & Boxer, A. (1988). A self-report measure of pubertal status: Reliability, validity, and initial norms. Journal of Youth and Adolescence, 17(2), 117–133.Google Scholar
  68. Remick, D. G. (2005). Interleukin-8. Critical Care Medicine, 33(12), S466–S467.Google Scholar
  69. Riancho, A., Zarrabeitia, M. T., Amado, A., Olmos, M., & González-Macías, J. (1994). Age-related differences in cytokine secretion. Gerontology, 40(1), 8–12.Google Scholar
  70. Rudy, B. J., Wilson, C. M., Durako, S., Moscicki, A. B., Muenz, L., & Douglas, S. D. (2002). Peripheral blood lymphocyte subsets in adolescents: a longitudinal analysis from the REACH project. Clin. Diagn. Lab. Immunol., 9(5), 959–965.Google Scholar
  71. Segerstrom, S. C., & Miller, G. E. (2004). Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychological Bulletin, 130(4), 601.Google Scholar
  72. Shirtcliff, E. A., Dahl, R. E., & Pollak, S. D. (2009). Pubertal development: correspondence between hormonal and physical development. Child Development, 80(2), 327–337.Google Scholar
  73. Solmi, M., Veronese, N., Favaro, A., Santonastaso, P., Manzato, E., Sergi, G., & Correll, C. U. (2015). Inflammatory cytokines and anorexia nervosa: A meta-analysis of cross-sectional and longitudinal studies. Psychoneuroendocrinology, 51, 237–252.Google Scholar
  74. Strieter, R. M., Kunkel, S. L., & Bone, R. C. (1993). Role of tumor necrosis factor-alpha in disease states and inflammation. Critical Care Medicine, 21(10 Suppl.), S447–S463.Google Scholar
  75. Stroud, L. R., Papandonatos, G. D., Williamson, D. E., & Dahl, R. E. (2011). Sex differences in cortisol response to corticotropin releasing hormone challenge over puberty: Pittsburgh Pediatric Neurobehavioral Studies. Psychoneuroendocrinology, 36(8), 1226–1238.Google Scholar
  76. Turnbull, A. V., & Rivier, C. L. (1999). Regulation of the hypothalamic-pituitary–adrenal axis by cytokines: actions and mechanisms of action. Physiological Reviews, 79(1), 1–71.Google Scholar
  77. Van Nimwegen, L., De Haan, L., Van Beveren, N., Van Den Brink, W., & Linszen, D. (2005). Adolescence, schizophrenia and drug abuse: a window of vulnerability. Acta Psychiatrica Scandinavica, 111, 35–42.Google Scholar
  78. Van Snick, J. (1990). Interleukin-6: an overview. Annual Review of Immunology, 8(1), 253–278.Google Scholar
  79. Verthelyi, D. (2001). Sex hormones as immunomodulators in health and disease. International Immunopharmacology, 1(6), 983–993.Google Scholar
  80. Walker, E., & Bollini, A. M. (2002). Pubertal neurodevelopment and the emergence of psychotic symptoms. Schizophrenia Research, 54(1-2), 17–23.Google Scholar
  81. Whitacre, C. C. (2001). Sex differences in autoimmune disease. Nature Immunology, 2(9), 777.Google Scholar
  82. Zahn-Waxler, C., Shirtcliff, E. A., & Marceau, K. (2008). Disorders of childhood and adolescence: gender and psychopathology. Annual Review of Clinical Psychology, 4, 275–303.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Allison Stumper
    • 1
  • Daniel P. Moriarity
    • 1
  • Christopher L. Coe
    • 2
  • Lauren M. Ellman
    • 1
  • Lyn Y. Abramson
    • 2
  • Lauren B. Alloy
    • 1
    Email author
  1. 1.Temple UniversityPhiladelphiaUSA
  2. 2.University of Wisconsin-MadisonMadisonUSA

Personalised recommendations