Journal of Youth and Adolescence

, Volume 48, Issue 4, pp 655–667 | Cite as

Differences in Sensitivity to Environment Depending on Catechol-O-Methyltransferase (COMT) Gene? A Meta-analysis of Child and Adolescent Gene-by-Environment Studies

  • Cong CaoEmail author
  • Lili Cao
  • Jie ChenEmail author
Empirical Research


To date, several gene-by-environment (G×E) meta-analyses have been conducted to provide cumulative G×E evidence from previous inconsistent empirical studies; however, these meta-analyses have mainly focused on the serotonin transporter gene (5-HTTLPR). The present study aimed to conduct the first meta-analysis that tested whether and how an important dopaminergic gene—the catechol-O-methyltransferase (COMT) gene contributed to differences in child and adolescent environmental sensitivity. A total of 22 studies with 20,528 participants involving in various developmental outcomes (e.g., externalizing problems, emotional problems, cognitive development and social behaviors) met the inclusion criteria. The pooled effect size of environment-outcome associations in the Met-allele carriers (r = 0.11, 95% CI = [0.07, 0.15], p < .001) did not significantly differ from that in the Val/Val homozygotes (r = 0.14, 95% CI = [0.08, 0.20], p < 0.001) (Qcontrast (1) = 0.37, p = 0.54). The aggregated Liptak-Stouffer Z-score that combined the p-values of the COMT-environment interaction yield a nonsignificant result (p = 0.52). Moreover, outcome domain, sample age, ethnicity and assessment methods for the environment and the outcome did not moderate the effect sizes. Thus far, the COMT Val158Met polymorphism fails to explain the differences in sensitivity to environment. Future studies might incorporate more factors, such as polygenic effects of genetic pathways, epigenetics (EpiG) processing and sexual dimorphism, into the COMT-environment interaction equation.


Meta-analysis COMT Gene-by-environment interaction (G×E) Child Adolescent 



We are grateful to the authors of included studies who generously provided statistical information for our data extraction. We thank Marian J. Bakermans-Kranenburg, Vrije Universiteit Amsterdam, and Huiyong Fan, Bohai University for their statistical assistance.

Authors’ Contributions

C.C. conceived of the study, participated in its design and data analysis and drafted the manuscript; L.C. participated in data analysis and interpretation of the data and helped to draft the manuscript; J.C. participated in the design and helped to draft the manuscript. All authors read and approved the final manuscript.


This study was supported by the National Natural Science Foundation of China (31800936), the Social Science Planning Fund of Shandong Province (18DJYJ01) and the Fundamental Research Funds of Shandong University (2018GN022) to C.C. L.C. was supported by the Social Science Planning Fund of Shandong Province (17CSZJ01).

Data Sharing and Declaration

The datasets generated and/or analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All research reported on in the manuscript was conducted in compliance with APA ethical principles. The study consisted of secondary analyses of de-identified data, and therefore did not require ethics board approval.

Informed Consent

As the study was a quantitative synthesis of publicly available material, the informed consent from participants was not required.

Supplementary material

10964_2019_1004_MOESM1_ESM.docx (43 kb)
Supplementary Information.


  1. *Studies included in the meta-analyses are indicated with an asterisk.Google Scholar
  2. Bakermans-Kranenburg, M. J., & van Ijzendoorn, M. H. (2014). A sociability gene? Meta-analysis of oxytocin receptor genotype effects in humans. Psychiatric Genetics, 24, 45–51.CrossRefGoogle Scholar
  3. Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2015). The hidden efficacy of interventions: Gene×environment experiments from a differential susceptibility perspective. Annual Review of Psychology, 66, 381–409.CrossRefGoogle Scholar
  4. Belsky, J., & Pluess, M. (2013). Genetic moderation of early child-care effects on social functioning across childhood: A developmental analysis. Child Development, 84, 1209–1225.CrossRefGoogle Scholar
  5. *Blair, C., Sulik, M., Willoughby, M., Mills‐Koonce, R., Petrill, S., & Bartlett, C., Family Life Project Investigators. (2015). Catechol‐O‐methyltransferase Val158met polymorphism interacts with early experience to predict executive functions in early childhood. Developmental Psychobiology, 57, 833–841.CrossRefGoogle Scholar
  6. Brennan, P. A., Hammen, C., Sylvers, P., Bor, W., Najman, J., Lind, P., & Smith, A. K. (2011). Interactions between the COMT Val108/158Met polymorphism and maternal prenatal smoking predict aggressive behavior outcomes. Biological Psychology, 87, 99–105.CrossRefGoogle Scholar
  7. Byrd, A. L., & Manuck, S. B. (2014). MAOA, childhood maltreatment, and antisocial behavior: Meta-analysis of a gene-environment interaction. Biological Psychiatry, 75, 9–17.CrossRefGoogle Scholar
  8. *Campbell, D., Bick, J., Yrigollen, C. M., Lee, M., Joseph, A., & Chang, J. T., Learning Disabilities Project: Zambia. (2013). Schooling and variation in the COMT gene: The devil is in the details. Journal of Child Psychology and Psychiatry, 54, 1056–1065.CrossRefGoogle Scholar
  9. Chen, J., Lipska, B. K., Halim, N., Ma, Q. D., Matsumoto, M., Melhem, S., & Egan, M. F. (2004). Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): Effects on mRNA, protein, and enzyme activity in postmortem human brain. The American Journal of Human Genetics, 75, 807–821.CrossRefGoogle Scholar
  10. *Conway, C. C., Hammen, C., Brennan, P. A., Lind, P. A., & Najman, J. M. (2010). Interaction of chronic stress with serotonin transporter and catechol-O-methyltransferase polymorphisms in predicting youth depression. Depress Anxiety, 27, 737–745.CrossRefGoogle Scholar
  11. Culverhouse, R. C., Saccone, N. L., Horton, A. C., Ma, Y., Anstey, K. J., Banaschewski, T., & Goldman, N. (2018). Collaborative meta-analysis finds no evidence of a strong interaction between stress and 5-HTTLPR genotype contributing to the development of depression. Molecular Psychiatry, 23, 133–142.CrossRefGoogle Scholar
  12. *Drury, S. S., Theall, K. P., Smyke, A. T., Keats, B. J., Egger, H. L., Nelson, C. A., & Zeanah, C. H. (2010). Modification of depression by COMT val158met polymorphism in children exposed to early severe psychosocial deprivation. Child Abuse & Neglect, 34, 387–395.CrossRefGoogle Scholar
  13. Dumontheil, I., Roggeman, C., Ziermans, T., Peyrard-Janvid, M., Matsson, H., Kere, J., & Klingberg, T. (2011). Influence of the COMT genotype on working memory and brain activity changes during development. Biological Psychiatry, 70, 222–229.CrossRefGoogle Scholar
  14. Duncan, L. E., & Keller, M. C. (2011). A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. American Journal of Psychiatry, 168, 1041–1049.CrossRefGoogle Scholar
  15. Eaves, L. J. (2006). Genotype×environment interaction in psychopathology: Fact or artifact? Twin Research and Human Genetics, 9, 1–8.CrossRefGoogle Scholar
  16. Forbes, E. E., & Dahl, R. E. (2012). Research review: Altered reward function in adolescent depression: What, when and how? Journal of Child Psychology and Psychiatry, 53, 3–15.CrossRefGoogle Scholar
  17. Halldorsdottir, T., & Binder, E. B. (2017). Gene×environment interactions: From molecular mechanisms to behavior. Annual Review of Psychology, 68, 215–241.CrossRefGoogle Scholar
  18. Harrison, P. J., & Tunbridge, E. M. (2008). Catechol-o-methyltransferase (COMT): A gene contributing to sex differences in brain function, and to sexual dimorphism in the predisposition to psychiatric disorders. Neuropsychopharmacology, 33, 3037–3045.CrossRefGoogle Scholar
  19. *Hygen, B. W., Belsky, J., Stenseng, F., Lydersen, S., Guzey, I. C., & Wichstrøm, L. (2015). Child exposure to serious life events, COMT, and aggression: Testing differential susceptibility theory. Developmental Psychology, 51, 1098–1104.CrossRefGoogle Scholar
  20. Hygen, B. W., Guzey, I. C., Belsky, J., Berg-Nielsen, T. S., & Wichstrøm, L. (2014). Catechol-O-methyltransferase Val158Met genotype moderates the effect of disorganized attachment on social development in young children. Developmental and Psychopathology, 26, 947–961.CrossRefGoogle Scholar
  21. Karg, K., Burmeister, M., Shedden, K., & Sen, S. (2011). The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: Evidence of genetic moderation. Archives of General Psychiatry, 68, 444–454.CrossRefGoogle Scholar
  22. *Kok, R., Bakermans‐Kranenburg, M. J., Van IJzendoorn, M. H., Velders, F. P., Linting, M., Jaddoe, V. W., & Tiemeier, H. (2013). The role of maternal stress during pregnancy, maternal discipline, and child COMT Val158Met genotype in the development of compliance. Developmental Psychobiology, 55, 451–464.CrossRefGoogle Scholar
  23. *Kurowski, B. G., Treble-Barna, A., Zang, H., Zhang, N., Martin, L. J., Yeates, K. O., & Wade, S. L. (2017). Catechol-o-methyltransferase genotypes and parenting influence on long-term executive functioning after moderate to severe early childhood traumatic brain injury: An exploratory study. Journal of Head Trauma Rehabilitation, 32, 404–412.CrossRefGoogle Scholar
  24. Lachman, H. M., Papolos, D. F., Saito, T., Yu, Y. M., Szumlanski, C. L., & Weinshilboum, R. M. (1996). Human catechol-O-methyltransferase pharmacogenetics: Description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics, 6, 243–250.CrossRefGoogle Scholar
  25. Lamb, Y. N., Thompson, J. M., Murphy, R., Wall, C., Kirk, I. J., & Morgan, A. R., ABC Study group. (2014). Perceived stress during pregnancy and the catechol-O-methyltransferase (COMT)rs165599 polymorphism impacts on childhood IQ. Cognition, 132, 461–470.CrossRefGoogle Scholar
  26. Lancaster, T. M., Heerey, E. A., Mantripragada, K., & Linden, D. E. J. (2015). Replication study implicates COMT val158met polymorphism as a modulator of probabilistic reward learning. Genes, Brain and Behavior, 14, 486–492.CrossRefGoogle Scholar
  27. *Laucht, M., Blomeyer, D., Buchmann, A. F., Treutlein, J., Schmidt, M. H., Esser, G., & Banaschewski, T. (2012). Catechol‐O‐methyltransferase Val158Met genotype, parenting practices and adolescent alcohol use: Testing the differential susceptibility hypothesis. Journal of Child Psychology and Psychiatry, 53, 351–359.CrossRefGoogle Scholar
  28. *Li, Z., Hygen, B. W., Widaman, K. F., Berg-Nielsen, T. S., Wichstrøm, L., & Belsky, J. (2016). Disorganization, COMT, and children’s social behavior: The Norwegian hypothesis of legacy of disorganized attachment. Frontiers in Psychology, 7, 1013.Google Scholar
  29. Lipsey, M. W., & Wilson, D. B. (2001). Practical meta-analysis, Sage Publications, Inc.Google Scholar
  30. Lonsdorf, T. B., Golkar, A., Lindstöm, K. M., Fransson, P., Schalling, M., Öhman, A., & Ingvar, M. (2011). 5-HTTLPR and COMTval158met genotype gate amygdala reactivity and habituation. Biological Psychology, 87, 106–112.CrossRefGoogle Scholar
  31. Luijk, M. P., Roisman, G. I., Haltigan, J. D., Tiemeier, H., Booth‐LaForce, C., van Ijzendoorn, M. H., & Verhulst, F. C. (2011). Dopaminergic, serotonergic, and oxytonergic candidate genes associated with infant attachment security and disorganization? In search of main and interaction effects. Journal of Child Psychology and Psychiatry, 52, 1295–1307.CrossRefGoogle Scholar
  32. Mier, D., Kirsch, P., & Meyer-Lindenberg, A. (2010). Neural substrates of pleiotropic action of genetic variation in COMT: A meta-analysis. Molecular Psychiatry, 15, 918–927.CrossRefGoogle Scholar
  33. Munafò, M. R., Durrant, C., Lewis, G., & Flint, J. (2009). Gene×environment interactions at the serotonin transporter locus. Biological Psychiatry, 65, 211–219.CrossRefGoogle Scholar
  34. Nederhof, E., Belsky, J., Ormel, J., & Oldehinkel, A. J. (2012). Effects of divorce on Dutch boys’ and girls’ externalizing behavior in Gene×Environment perspective: Diathesis stress or differential susceptibility in the Dutch Tracking Adolescents’ Individual Lives Survey study? Development and Psychopathology, 24, 929–939.CrossRefGoogle Scholar
  35. *Nijmeijer, J. S., Hartman, C. A., Rommelse, N. N., Altink, M. E., Buschgens, C. J., Fliers, E. A., & Verhulst, F. C. (2010). Perinatal risk factors interacting with catechol O‐methyltransferase and the serotonin transporter gene predict ASD symptoms in children with ADHD. Journal of Child Psychology and Psychiatry, 51, 1242–1250.CrossRefGoogle Scholar
  36. Nikolova, Y. S., Ferrell, R. E., Manuck, S. B., & Hariri, A. R. (2011). Multilocus genetic profile for dopamine signaling predicts ventral striatum reactivity. Neuropsychopharmacology, 36, 1940–1947.CrossRefGoogle Scholar
  37. *Nobile, M., Rusconi, M., Bellina, M., Marino, C., Giorda, R., Carlet, O., & Battaglia, M. (2010). COMT Val158Met polymorphism and socioeconomic status interact to predict attention deficit/hyperactivity problems in children aged 10–14. European Child & Adolescent Psychiatry, 19, 549–557.CrossRefGoogle Scholar
  38. *O’Donnell, K. J., Glover, V., Lahti, J., Lahti, M., Edgar, R. D., Räikkönen, K., & O’Connor, T. G. (2017). Maternal prenatal anxiety and child COMT genotype predict working memory and symptoms of ADHD. PLoS ONE, 12, e0177506.CrossRefGoogle Scholar
  39. Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. Science, 349, aac4716.CrossRefGoogle Scholar
  40. Palmatier, M. A., Kang, A. M., & Kidd, K. K. (1999). Global variation in the frequencies of functionally different catechol-O-methyltransferase alleles. Biological Psychiatry, 46, 557–567.CrossRefGoogle Scholar
  41. *Park, S., Kim, B. N., Kim, J. W., Shin, M. S., Yoo, H. J., & Cho, S. C. (2017). Interactions between early trauma and catechol-O-methyltransferase genes on inhibitory deficits in children with ADHD. Journal of Attention Disorders, 21, 183–189.CrossRefGoogle Scholar
  42. Peterson, R. A., & Brown, S. P. (2005). On the use of beta coefficients in meta-analysis. Journal of Applied Psychology, 90, 175–181.CrossRefGoogle Scholar
  43. *Quan, J., Ong, M. L., Bureau, J. F., Sim, L. W., Sanmugam, S., Malik, A. B. A., & Kwek, K. (2017). The influence of CHRNA4, COMT, and maternal sensitivity on orienting and executive attention in 6-month-old infants. Brain and Cognition, 116, 17–28.CrossRefGoogle Scholar
  44. Risch, N., Herrell, R., Lehner, T., Liang, K. Y., Eaves, L., Hoh, J., & Merikangas, K. R. (2009). Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: A meta-analysis. JAMA, 301, 2462–2471.CrossRefGoogle Scholar
  45. Roisman, G. I., & van IJzendoorn, M. H. (2018). Meta-analysis and Individual Participant Data Synthesis in Child Development: Introduction to the Special Section. Child Development, 89, 1939–1942.CrossRefGoogle Scholar
  46. *Salatino-Oliveira, A., Murray, J., Kieling, C., Genro, J. P., Polanczyk, G., Anselmi, L., & Hutz, M. H. (2016). COMT and prenatal maternal smoking in associations with conduct problems and crime: The Pelotas 1993 birth cohort study. Scientific Reports, 6, 29900.CrossRefGoogle Scholar
  47. Sannino, S., Padula, M. C., Managò, F., Schaer, M., Schneider, M., Armando, M., & Vicari, S. (2017). Adolescence is the starting point of sex-dichotomous COMT genetic effects. Translational. Psychiatry, 7, e1141.Google Scholar
  48. *Sengupta, S. M., Grizenko, N., Schmitz, N., Schwartz, G., Amor, L. B., Bellingham, J., & Joober, R. (2006). COMT Val108/158Met gene variant, birth weight, and conduct disorder in children with ADHD. Journal of the American Academy of Child & Adolescent Psychiatry, 45, 1363–1369.CrossRefGoogle Scholar
  49. Sisk, C. L., & Zehr, J. L. (2005). Pubertal hormones organize the adolescent brain and behavior. Frontiers in Neuroendocrinology, 26, 163–174.CrossRefGoogle Scholar
  50. Slagt, M., Dubas, J. S., Deković, M., & van Aken, M. A. (2016). Differences in sensitivity to parenting depending on child temperament: A meta-analysis. Psychological Bulletin, 142, 1068–1110.CrossRefGoogle Scholar
  51. Stein, D. J., Newman, T. K., Savitz, J., & Ramesar, R. (2006). Warriors versus worriers: The role of COMT gene variants. CNS Spectrums, 11, 745–748.CrossRefGoogle Scholar
  52. *Sulik, M. J., Eisenberg, N., Spinrad, T. L., Lemery-Chalfant, K., Swann, G., Silva, K. M., & Verrelli, B. C. (2015). Interactions among catechol-O-methyltransferase genotype, parenting, and sex predict children’s internalizing symptoms and inhibitory control: Evidence for differential susceptibility. Development and Psychopathology, 27, 709–723.CrossRefGoogle Scholar
  53. *Thapar, A., Langley, K., Fowler, T., Rice, F., Turic, D., Whittinger, N., & O’Donovan, M. (2005). Catechol O-methyltransferase gene variant and birth weight predict early-onset antisocial behavior in children with attention-deficit/hyperactivity disorder. Archives of General Psychiatry, 62, 1275–1278.CrossRefGoogle Scholar
  54. *Thompson, J. M., Sonuga-Baker, E. J., Morgan, A. R., Cornforth, C. M., Turic, D., Ferguson, L. R., & Waldie, K. E. (2012). The catechol-O-methyltransferase (COMT) Val158Met polymorphism moderates the effect of antenatal stress on childhood behavioural problems: Longitudinal evidence across multiple ages. Developmental Medicine & Child Neurology, 54, 148–154.CrossRefGoogle Scholar
  55. Tunbridge, E. M. (2010). The catechol-O-methyltransferase gene: Its regulation and polymorphisms. International Review of Neurobiology, 95, 7–27).Google Scholar
  56. Uher, R., & McGuffin, P. (2010). The moderation by the serotonin transporter gene of environmental adversity in the etiology of depression: 2009 update. Molecular Psychiatry, 15, 18–22.CrossRefGoogle Scholar
  57. Ursini, G., Bollati, V., Fazio, L., Porcelli, A., Iacovelli, L., Catalani, A., & Taurisano, P. (2011). Stress-related methylation of the catechol-O-methyltransferase Val158 allele predicts human prefrontal cognition and activity. Journal of Neuroscience, 31, 6692–6698.CrossRefGoogle Scholar
  58. Vaessen, T. S. J., de Jong, L., Schäfer, A. T., Damen, T., Uittenboogaard, A., Krolinski, P., & Ermiş, A. (2018). The interaction between cannabis use and the Val158Met polymorphism of the COMT gene in psychosis: A transdiagnostic meta–analysis. PLoS ONE, 13, e0192658.CrossRefGoogle Scholar
  59. Valentine, J. C., Pigott, T. D., & Rothstein, H. R. (2010). How many studies do you need? A primer on statistical power for meta-analysis. Journal of Educational and Behavioral Statistics, 35, 215–247.CrossRefGoogle Scholar
  60. van Ijzendoorn, M. H., & Bakermans-Kranenburg, M. J. (2015). Genetic differential susceptibility on trial: Meta-analytic support from randomized controlled experiments. Development and Psychopathology, 27, 151–162.CrossRefGoogle Scholar
  61. van IJzendoorn, M. H., Belsky, J., & Bakermans-Kranenburg, M. J. (2012). Serotonin transporter genotype 5-HTTLPR as a marker of differential susceptibility? A meta-analysis of child and adolescent gene-by-environment studies. Translational Psychiatry, 2, e147.CrossRefGoogle Scholar
  62. *Voelker, P., Sheese, B. E., Rothbart, M. K., & Posner, M. I. (2009). Variations in catechol-O-methyltransferase gene interact with parenting to influence attention in early development. Neuroscience, 164, 121–130.CrossRefGoogle Scholar
  63. Young, E. A., Abelson, J. L., & Cameron, O. G. (2005). Interaction of brain noradrenergic system and the hypothalamic–pituitary–adrenal (HPA) axis in man. Psychoneuroendocrinology, 30, 807–814.CrossRefGoogle Scholar
  64. *Zhang, H., Li, J., Yang, B., Ji, T., Long, Z., Xing, Q., & Cao, F. (2018). The divergent impact of catechol-O-methyltransferase (COMT) Val158Met genetic polymorphisms on executive function in adolescents with discrete patterns of childhood adversity. Comprehensive Psychiatry, 81, 33–41.CrossRefGoogle Scholar
  65. *Zhang, W., Cao, C., Wang, M., Ji, L., & Cao, Y. (2016). Monoamine oxidase a (MAOA) and catechol-o-methyltransferase (COMT) gene polymorphisms interact with maternal parenting in association with adolescent reactive aggression but not proactive aggression: Evidence of differential susceptibility. Journal of Youth and Adolescence, 45, 812–829.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of NursingShandong UniversityJinanChina
  2. 2.Student Counseling CenterShandong UniversityJinanChina
  3. 3.Key Laboratory of Mental Health, Institute of PsychologyChinese Academy of SciencesBeijingChina

Personalised recommendations