Advertisement

Journal of World Prehistory

, Volume 32, Issue 1, pp 33–72 | Cite as

Midden or Molehill: The Role of Coastal Adaptations in Human Evolution and Dispersal

  • Manuel WillEmail author
  • Andrew W. Kandel
  • Nicholas J. Conard
Article

Abstract

Coastal adaptations have become an important topic in discussions about the evolution and dispersal of Homo sapiens. However, the actual distribution and potential relevance of coastal adaptations (broadly, the use of coastal resources and settlement along shorelines) in these processes remains debated, as is the claim that Neanderthals exhibited similar behaviors. To assess both questions, we performed a systematic review comparing coastal adaptations of H. sapiens during the African Middle Stone Age (MSA) with those of contemporaneous Neanderthals during the European Middle Paleolithic. In both species, systematic use of marine resources and coastal landscapes constitutes a consistent behavioral signature over ~ 100,000 years (MIS 6–3) in several regions of Africa and Europe. We found more similarities than differences between Neanderthals and modern humans, with remaining disparities all in degree rather than kind. H. sapiens exploited a wider range of marine resources—particularly shellfish—more intensively. MSA shellfish-bearing sites are also more often associated with intense occupations on coastal landscapes, and more evidence of complex material culture such as shell beads. In terms of broader ramifications, Pleistocene coastal adaptations are best conceived of as an ‘add-on’ to previous adaptive strategies, complementing more frequently exploited inland resources and landscapes. Still, Neanderthals and modern humans increased their dietary breadth and quality, and added options for occupation and range expansion along coastlines. Potential evolutionary implications of these multi-generational behaviors include higher intakes of brain-selective nutrients as a basis for neurobiological changes connected to increased cognitive capacities, but also greater reproductive success, dispersal abilities and behavioral flexibility. Whether gradual differences between modern humans and Neanderthals stimulated different evolutionary trajectories is a question for future research.

Keywords

Paleolithic archaeology Shellfish exploitation Marine resources Homo sapiens Neanderthals 

Notes

Acknowledgements

The manuscript has benefited from constructive criticisms by several anonymous reviewers and the contribution of many colleagues by stimulating discussion or sending primary literature, including Nuno Bicho, Robert Foley, Huw Groucutt, Jonathan Haws, Antonietta Jerardino, Katharine Kyriacou, Geeske Langejans, Chris Miller, John Parkington, and Jose Ramos-Muñoz. We also thank Susan Mentzer, Chris Miller, Jayson Orton, and John Parkington for sharing photos on shellfish-bearing MSA sites. Financial resources were provided by the Senckenberg Research Institute, the research project ‘The Role of Culture in Early Expansions of Humans’ sponsored by the Heidelberg Academy of Sciences and Humanities, and the German Science Foundation (DFG). Manuel Will acknowledges support by a Research Fellowship from Gonville and Caius College (Cambridge).

Supplementary material

10963_2018_9127_MOESM1_ESM.doc (262 kb)
Supplementary material 1 (DOC 262 kb)

References

  1. Arambourg, C. (1967). Appendix A. Observations sur la faune des Grottes d’Hercule près de Tanger, Maroc. In B. Howe (Ed.), The Palaeolithic of Tangier, Morocco: Excavations at Cape Ashakar, 1939–1947 (pp. 181–186). Cambridge: The Peabody Museum.Google Scholar
  2. Archer, W., Braun, D. R., Harris, J. W., McCoy, J. T., & Richmond, B. G. (2014). Early Pleistocene aquatic resource use in the Turkana Basin. Journal of Human Evolution, 77, 74–87.Google Scholar
  3. Avery, G., Halkett, D., Orton, J., Steele, T., Tusenius, M., & Klein, R. (2008). The Ysterfontein 1 Middle Stone Age rock shelter and the evolution of coastal foraging. Goodwin Series, 10, 66–89.Google Scholar
  4. Bae, C. J., Douka, K., & Petraglia, M. D. (2017). On the origin of modern humans: Asian perspectives. Science, 358, eaai9067.Google Scholar
  5. Bailey, G. (2009). The Red Sea, coastal landscapes, and hominin dispersals. In M. D. Petraglia & J. L. Rose (Eds.), The evolution of human populations in Arabia: Paleoenvironments, prehistory and genetics (pp. 15–38). New York: Springer.Google Scholar
  6. Bailey, G. N., Devès, M. H., Inglis, R. H., et al. (2015). Blue Arabia: Palaeolithic and underwater survey in SW Saudi Arabia and the role of coasts in Pleistocene dispersals. Quaternary International, 382, 42–57.Google Scholar
  7. Bailey, G. N., & Flemming, N. C. (2008). Archaeology of the continental shelf: Marine resources, submerged landscapes and underwater archaeology. Quaternary Science Reviews, 27, 2153–2165.Google Scholar
  8. Bailey, G. N., King, G. C. P., Flemming, N. C., Lambeck, K., Momber, G., Moran, L. J., et al. (2007). Coastlines, submerged landscapes and human evolution: The Red Sea Basin and the Farasan Islands. Journal of Island and Coastal Archaeology, 2, 127–160.Google Scholar
  9. Bailey, G. N., Sakellariou, D., Alsharekh, A., Al Nomani, S., et al. (2017) Africa–Arabia connections and geo-archaeological exploration in the southern Red Sea: Preliminary results and wider significance. In G. N. Bailey et al. (Eds.), Under the Sea: Archaeology and palaeolandscapes of the continental shelf (pp. 361–373). Coastal Research Library 20. Dordrecht: Springer.  https://doi.org/10.1007/978-3-319-53160-1_23.
  10. Barker, G., Bennett, P., Farr, L., et al. (2012). The Cyrenaican Prehistory Project 2012: The fifth season of investigations of the Haua Fteah cave. Libyan Studies, 43, 115–136.Google Scholar
  11. Barriere, J. (1969). Les coquilles marines découvertes sur le sol de la cabane acheuléenne du Lazaret. In H. de Lumley (Ed.), Une cabane acheuléenne dans la grotte du Lazaret (Nice) (pp. 117–118). Paris: Mémoires de la Société Préhistorique Française.Google Scholar
  12. Barton, R. N. E., Stringer, C. B., & Finlayson, J. C. (Eds.). (2012). Neanderthals in context: A report of the 1995–98 excavations at Gorham’s and Vanguard Caves. Oxford: Oxford University Press.Google Scholar
  13. Bar-Yosef Mayer, D. E. (2015). Nassarius shells: Preferred beads of the Palaeolithic. Quaternary International, 390, 79–84.Google Scholar
  14. Beaton, J. M. (1995). The transition on the coastal fringe of Greater Australia. Antiquity, 69, 798–806.Google Scholar
  15. Benito, B. M., Svenning, J. C., Kellberg-Nielsen, T., Riede, F., Gil-Romera, G., Mailund, T., et al. (2017). The ecological niche and distribution of Neanderthals during the Last Interglacial. Journal of Biogeography, 44, 51–61.Google Scholar
  16. Benjamin, J., Rovere, A., Fontana, A., et al. (2017). Late Quaternary sea-level changes and early human societies in the central and eastern Mediterranean Basin: An interdisciplinary review. Quaternary International, 449, 29–57.Google Scholar
  17. Bentley, R. A., & Maschner, H. D. (2003). Considering complexity theory in archaeology. In R. A. Bentley & H. D. Maschner (Eds.), Complex systems and archaeology: Empirical and theoretical applications (pp. 1–8). Salt Lake City: University of Utah Press.Google Scholar
  18. Bicho, N., & Haws, J. (2008). At the land’s end: Marine resources and the importance of fluctuations in the coastline in the prehistoric hunter-gatherer economy of Portugal. Quaternary Science Reviews, 27, 2166–2175.Google Scholar
  19. Bigalke, E. H. (1973). The exploitation of shellfish by coastal tribesmen of the Transkei. Annals of the Cape Province Museum of Natural History, 9, 159–175.Google Scholar
  20. Blinkhorn, J., Ajithprasad, P., & Mukherjee, A. (2017). Did modern human dispersal take a coastal route into India? New evidence from Palaeolithic surveys of Kachchh, Gujarat. Journal of Field Archaeology, 42, 198–213.Google Scholar
  21. Bocherens, H. (2009). Neanderthal dietary habits: Review of the isotopic evidence. In J. J. Hublin & M. P. Richards (Eds.), The evolution of Hominin diets (pp. 241–250). Dordrecht: Springer.Google Scholar
  22. Boivin, N., Fuller, D. Q., Dennell, R., Allaby, R., & Petraglia, M. D. (2013). Human dispersal across diverse environments of Asia during the Upper Pleistocene. Quaternary International, 300, 32–47.Google Scholar
  23. Bouzouggar, A., Barton, R. N. E., Vanhaeren, M., et al. (2007). 82,000–year old shell beads from North Africa and implications for the origins of modern human behavior. Proceedings of the National Academy of Sciences of the United States of America, 104, 9964–9969.Google Scholar
  24. Braje, T. J., Dillehay, T. D., Erlandson, J. M., Klein, R. G., & Rick, T. C. (2017). Finding the first Americans. Science, 358, 592–594.Google Scholar
  25. Brandon, R. N. (1978). Adaptation and evolutionary theory. Studies in History and Philosophy of Science Part A, 9, 181–206.Google Scholar
  26. Braun, D. P. (1990). Selection and evolution in nonhierarchical organization. In S. Upham (Ed.), The evolution of political systems: Sociopolitics in small-scale sedentary societies (pp. 62–86). New York: Cambridge University Press.Google Scholar
  27. Braun, D. R., Harris, J. W. K., Levin, N. E., et al. (2010). Early hominin diet included diverse terrestrial and aquatic animals 1.95 Ma ago in East Turkana, Kenya. Proceedings of the National Academy of Sciences of the United States of America, 107, 10002–10007.Google Scholar
  28. Breeze, P. S., Groucutt, H. S., Drake, N. A., White, T. S., Jennings, R. P., & Petraglia, M. D. (2016). Palaeohydrological corridors for hominin dispersals in the Middle East ~ 250–70,000 years ago. Quaternary Science Reviews, 144, 155–185.Google Scholar
  29. Brenna, J. T., & Carlson, S. E. (2014). Docosahexaenoic acid and human brain development: Evidence that a dietary supply is needed for optimal development. Journal of Human Evolution, 77, 99–106.Google Scholar
  30. Broadhurst, C. L., Wang, Y., Crawford, M. A., Cunnane, S. C., Parkington, J. E., & Schmidt, W. F. (2002). Brain-specific lipids from marine, lacustrine, or terrestrial food resources: Potential impact on early African Homo sapiens. Comparative Biochemistry and Physiology B, 131, 653–673.Google Scholar
  31. Brown, K., Fa, D., Finlayson, G., & Finlayson, C. (2011). Small game and marine resource exploitation by Neanderthals: The evidence from Gibraltar. In N. Bicho, J. A. Haws, & L. G. Davis (Eds.), Trekking the shore: Changing coastlines and the antiquity of coastal settlement (pp. 247–272). New York: Springer.Google Scholar
  32. Burke, L., Kura, Y., Kassem, K., Ravenga, C., Spalding, M., & McAllister, D. (2001). Pilot assessment of global ecosystems: Coastal ecosystems. Washington: World Resources Institute.Google Scholar
  33. Campmas, E. (2018). Integrating human–animal relationships into new data on Aterian complexity: A paradigm shift for the North African Middle Stone Age. African Archaeological Review, 34, 469–491.Google Scholar
  34. Campmas, E., Amani, F., Morala, A., Debénath, A., El Hajraoui, M. A., & Nespoulet, R. (2016). Initial insights into Aterian hunter-gatherer settlements on coastal landscapes: The example of Unit 8 of El Mnasra Cave (Témara, Morocco). Quaternary International, 413, 5–20.Google Scholar
  35. Campmas, E., Michel, P., Costamagno, S., Amani, F., Stoetzel, E., Nespulet, R., et al. (2015). Were Upper Pleistocene human/non-human predator occupations at the Témara caves (El Harhoura 2 and El Mnasra, Morocco) influenced by climate change? Journal of Human Evolution, 78, 122–143.Google Scholar
  36. Campmas, E., Michel, P., Costamagno, S., Nespoulet, R., & El Hajraoui, M. A. (2017). Which non-human predators are responsible for faunal accumulations at El Harhoura 2 and El Mnasra caves (Témara, Morocco)? Comptes Rendus Palevol, 16, 333–350.Google Scholar
  37. Cantillo, J. J., Ramos, J., Soriguer, M., & Bernal, D. (2014). Evidencias de explotación de recursos marinos en la orilla norteafricana del estrecho de Gibraltar por sociedades del Pleistoceno en el Abrigo de Benzú (Ceuta). In J. J. Cantillo, D. Bernal, & J. Ramos (Eds.), Moluscos y púrpura en contextos arqueológicos atlántico–mediterráneos: Nuevos datos y reflexiones en clave de proceso histórico (pp. 23–31). Cádiz: Servicio de Publicaciones, Universidad de Cádiz.Google Scholar
  38. Catuneanu, O. (2002). Sequence stratigraphy of clastic systems: Concepts, merits, and pitfalls. Journal of African Earth Sciences, 35, 1–43.Google Scholar
  39. Chakroun, A., Chahid, D., Boudad, L., Campmas, E., Lenoble, A., Nespoulet, R., et al. (2017). The Pleistocene of Rabat (Morocco): Mollusks, coastal environments and human behavior. African Archaeological Review, 34, 493–510.Google Scholar
  40. Clark, A. E., Bouzouggar, A., Kuhn, S. L., Mentzer, S. M., Fernandez, P., Muntzer, S., et al. (2016). First results on the MSA of the south Atlantic coast of Morocco from Bizmoune Cave (Essaouira). Abstract for the 23rd Biennial Meeting of the Society of African Archaeologists, 99.Google Scholar
  41. Clark, J. L., & Kandel, A. W. (2013). The evolutionary implications of variation in human hunting strategies and diet breadth during the Middle Stone Age of southern Africa. Current Anthropology, 54(S8), S269–s287.Google Scholar
  42. Clarkson, C., Jacobs, Z., Marwick, B., et al. (2017). Human occupation of northern Australia by 65,000 years ago. Nature, 547, 306.Google Scholar
  43. Colonese, A. C., Mayer, D. E., Fa, D. A., Finlayson, J. C., Lubell, D., & Stiner, M. C. (2011). Marine mollusc exploitation in Mediterranean prehistory: An overview. Quaternary International, 239, 86–103.Google Scholar
  44. Conard, N. J. (2014). Cultural evolution in Africa and Eurasia during the Middle and Late Pleistocene. In W. Henke & I. Tattersall (Eds.), Handbook of paleoanthropology (pp. 2001–2037). Berlin: Springer.Google Scholar
  45. Cortés-Sánchez, M., Morales-Muniz, A., Simón-Vallejo, M. D., et al. (2011). Earliest known use of marine resources by Neanderthals. PLoS ONE, 6, e24026.Google Scholar
  46. Creanza, N., Kolodny, O., & Feldman, M. W. (2017). Greater than the sum of its parts? Modelling population contact and interaction of cultural repertoires. Journal of the Royal Society, Interface, 14, 20170171. https://doi.org/10.1098/rsif.2017.0171.Google Scholar
  47. Cunnane, S. C., & Stewart, K. M. (Eds.). (2010). Human brain evolution: The influence of freshwater and marine food resources. Hoboken: Wiley-Blackwell.Google Scholar
  48. d’Errico, F., García Moreno, R., & Rifkin, R. F. (2012). Technological, elemental and colorimetric analysis of an engraved ochre fragment from the Middle Stone Age levels of Klasies River Cave 1. Journal of Archaeological Science, 39, 942–952.Google Scholar
  49. d’Errico, F., Vanhaeren, M., Barton, N., et al. (2009). Additional evidence on the use of personal ornaments in the Middle Paleolithic of North Africa. Proceedings of the National Academy of Sciences of the United States of America, 106, 16051–16056.Google Scholar
  50. de Lumley, H. (1966). Les fouilles de Terra Amata à Nice. Premiers résultats. Bulletin du Musée d’Anthropologie Préhistorique de Monaco, 13, 29–51.Google Scholar
  51. de Lumley, H. (Ed.). (2009). Terra Amata: Nice, Alpes-Maritimes, France Tome I, Cadre géographique-Historique-Contexte géologique-Stratigraphie-Sédimentologie-Datation. Paris: CNRS.Google Scholar
  52. Depew, D. J. (2011). Adaptation as process: The future of Darwinism and the legacy of Theodosius Dobzhansky. Studies in History and Philosophy of Biological and Biomedical Sciences, 42, 89–98.Google Scholar
  53. Dibble, H. L., Aldeias, V., Alvarez-Fernández, E., et al. (2012). New excavations at the site of Contrebandiers cave, Morocco. PaleoAnthropology, 2012, 145–201.Google Scholar
  54. Dibble, H. L., Aldeias, V., Jacobs, Z., et al. (2013). On the industrial attributions of the Aterian and Mousterian of the Maghreb. Journal of Human Evolution, 64, 194–210.Google Scholar
  55. Discamps, E., & Faivre, J.-P. (2017). Substantial biases affecting Combe-Grenal faunal record cast doubts on previous models of Neanderthal subsistence and environmental context. Journal of Archaeological Science, 81, 128–132.Google Scholar
  56. Dobzhanski, T. (1968). Adaptedness and fitness. In R. Lewontin (Ed.), Population biology and evolution (pp. 109–121). Syracuse: Syracuse University Press.Google Scholar
  57. Douka, K., Jacobs, Z., Lane, C., et al. (2014). The chronostratigraphy of the Haua Fteah cave (Cyrenaica, northeast Libya). Journal of Human Evolution, 66, 39–63.Google Scholar
  58. Douka, K., & Spinapolice, E. E. (2012). Neanderthal shell tool production: Evidence from Middle Palaeolithic Italy and Greece. Journal of World Prehistory, 25, 45–79.Google Scholar
  59. Dusseldorp, G. L., & Langejans, G. H. J. (2013). Carry that weight: Coastal foraging and transport of marine resources during the South African Middle Stone Age. South African Humanities, 25, 105–135.Google Scholar
  60. El Hajraoui, M. A., Nespoulet, R., Debénath, A., & Dibble, H. L. (2012a). Préhistoire de la région de Rabat-Témara. Rabat: Villes et Sites d’Archéologie du Maroc, III.Google Scholar
  61. El Hajraoui, M. A., Oudouche, H., & Nespoulet, R. (2012b). Chapitre XXVI. Etude des coquilles perforées decouvertes à Témara. In M. A. El Hajraoui, R. Nespoulet, A. Debénath, & H. L. Dibble (Eds.), Préhistoire de la région de Rabat-Témara (pp. 191–195). Rabat: Villes et Sites d’Archéologie du Maroc, III.Google Scholar
  62. Erlandson, J. M. (2001). The archaeology of aquatic adaptations: Paradigms for a new millennium. Journal of Archaeological Research, 9, 287–350.Google Scholar
  63. Erlandson, J. M., & Braje, T. J. (2015). Coasting out of Africa: The potential of mangrove forests and marine habitats to facilitate human coastal expansion via the Southern Dispersal Route. Quaternary International, 382, 31–41.Google Scholar
  64. Erlandson, J. M., & Fitzpatrick, S. M. (2006). Oceans, islands, and coasts: Current perspectives on the role of the sea in human prehistory. Journal of Island and Coastal Archaeology, 1, 5–32.Google Scholar
  65. Fa, D. A. (2008). Effects of tidal amplitude on intertidal resource availability and dispersal pressure in prehistoric human coastal populations: The Mediterranean-Atlantic transition. Quaternary Science Reviews, 27, 2194–2209.Google Scholar
  66. Fa, D. A., Finlayson, J. C., Finlayson, G., Giles-Pacheco, F., Rodríguez-Vidal, J., & Gutiérrez-López, J. M. (2016). Marine mollusc exploitation as evidenced by the Gorham’s Cave (Gibraltar) excavations 1998–2005: The Middle-Upper Palaeolithic transition. Quaternary International, 407, 16–28.Google Scholar
  67. Field, J. S., & Lahr, M. (2006). Assessment of the southern dispersal: GIS based analyses of potential routes at oxygen isotope stage 4. Journal of World Prehistory, 19, 1–45.Google Scholar
  68. Finlayson, C. (2008). On the importance of coastal areas in the survival of Neanderthal populations during the Late Pleistocene. Quaternary Science Reviews, 27, 2246–2252.Google Scholar
  69. Fitzhugh, W. W. (1975). A comparative approach to northern maritime adaptations. In W. W. Fitzhugh (Ed.), Prehistoric maritime adaptations of the circumpolar zone (pp. 339–386). Paris: Mouton.Google Scholar
  70. Flemming, N. C. (2017). The role of the submerged prehistoric landscape in ground-truthing models of human dispersal during the last half million years. In G. N. Bailey et al. (Eds.), Under the sea: Archaeology and palaeolandscapes of the continental shelf. Coastal Research Library 20 (pp. 269–283). New York: Springer.  https://doi.org/10.1007/978-3-319-53160-1_23.
  71. Foley, R., & Lahr, M. M. (2014). The role of ‘the aquatic’ in human evolution: Constraining the aquatic ape hypothesis. Evolutionary Anthropology, 23, 56–59.Google Scholar
  72. Fujita, M., Yamasaki, S., Katagiri, C., et al. (2016). Advanced maritime adaptation in the western Pacific coastal region extends back to 35000–30000 years before present. Proceedings of the National Academy of Sciences of the United States of America, 113, 11184–11189.Google Scholar
  73. Futuyma, D. J. (2009). Evolution (2nd ed.). Sunderland: Sinauer Associates.Google Scholar
  74. Galili, E., Ronen, A., Mienis, H. K., & Horwitz, L. K. (2018). Beach deposits containing Middle Paleolithic archaeological remains from northern Israel. Quaternary International, 464, 43–57.Google Scholar
  75. Garefalakis, C., Panagopoulou, E., & Harvati, K. (2018). Late Pleistocene Neanderthal occupation of Western Mani: The evidence from the Middle Palaeolithic assemblages of Mavri Spilia. Quaternary International, 497, 4–13.Google Scholar
  76. Groucutt, H. S., Grün, R., Zalmout, I. A., et al. (2018). Homo sapiens in Arabia by 85,000 years ago. Nature Ecology and Evolution, 2, 800–809.Google Scholar
  77. Groucutt, H. S., Petraglia, M. D., Bailey, G., et al. (2015). Rethinking the dispersal of Homo sapiens out of Africa. Evolutionary Anthropology, 24, 149–164.Google Scholar
  78. Gumert, M. D., & Malaivijitnond, S. (2012). Marine prey processed with stone tools by Burmese long-tailed macaques (Macaca fascicularis aurea) in intertidal habitats. American Journal of Physical Anthropology, 149, 447–457.Google Scholar
  79. Haws, J. A., Funk, C. L., Benedetti, M. M., Bicho, N. F., Daniels, J. M., Minckley, T. A., et al. (2011). Paleolithic landscapes and seascapes of the west coast of Portugal. In Trekking the Shore (pp. 203–246). New York: Springer.Google Scholar
  80. Haws, J. A., & Hockett, B. S. (2004). Theoretical perspectives on the dietary role of small animals in human evolution. In J. P. Brugal & J. Desse (Eds.), Petits animaux et sociétés humaines (du complément alimentaire aux ressources utilitaires) (pp. 533–544). Antibes: Éditions APDCA.Google Scholar
  81. Henshilwood, C. S., d’Errico, F., van Niekerk, K. L., et al. (2011). A 100,000-year-old ochre processing workshop at Blombos Cave, South Africa. Science, 334, 219–222.Google Scholar
  82. Henshilwood, C. S., d’Errico, F., Vanhaeren, M., Van Niekerk, K., & Jacobs, Z. (2004). Middle Stone Age shell beads from South Africa. Science, 304, 404.Google Scholar
  83. Henshilwood, C. S., d’Errico, F., & Watts, I. (2009). Engraved ochres from the Middle Stone Age levels at Blombos Cave, South Africa. Journal of Human Evolution, 57, 27–47.Google Scholar
  84. Henshilwood, C. S., & Marean, C. W. (2003). The origin of modern human behavior: Critique of the models and their test implications. Current Anthropology, 44, 627–651.Google Scholar
  85. Henshilwood, C. S., Sealy, J., Yates, R., Cruz-Uribe, K., Goldberg, P., Grine, F. E., et al. (2001). Blombos Cave, Southern Cape, South Africa: Preliminary report on the 1992–1999 excavations of the Middle Stone Age levels. Journal of Archaeological Science, 28, 421–448.Google Scholar
  86. Henshilwood, C. S., Van Niekerk, K. L., Wurz, S., et al. (2014). Klipdrift Shelter, Southern Cape, South Africa: Preliminary report on the Howiesons Poort layers. Journal of Archaeological Science, 45, 284–303.Google Scholar
  87. Hockett, B., & Haws, J. (2003). Nutritional ecology and diachronic trends in Paleolithic diet and health. Evolutionary Anthropology, 12, 211–216.Google Scholar
  88. Hoffmann, D. L., Angelucci, D. E., Villaverde, V., Zapata, J., & Zilhão, J. (2018). Symbolic use of marine shells and mineral pigments by Iberian Neandertals 115,000 years ago. Science Advances, 4(2), eaar5255.Google Scholar
  89. Hublin, J. J., Ben-Ncer, A., Bailey, S. E., et al. (2017). New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature, 546, 289.Google Scholar
  90. Hublin, J.-J., Neubauer, S., & Gunz, P. (2015). Brain ontogeny and life history in Pleistocene hominins. Philosophical Transactions of the Royal Society B, 370, 20140062.  https://doi.org/10.1098/rstb.2014.0062.Google Scholar
  91. Jacobs, Z., Li, B., Farr, L., et al. (2017). The chronostratigraphy of the Haua Fteah cave (Cyrenaica, northeast Libya): Optical dating of early human occupation during Marine Isotope Stages 4, 5 and 6. Journal of Human Evolution, 105, 69–88.Google Scholar
  92. Janssen, C. I. F., & Kiliaan, A. J. (2014). Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: The influence of LCPUFA on neural development, aging, and neurodegeneration. Progress Lipid Research, 53, 1–17.Google Scholar
  93. Jerardino, A. (2010). Prehistoric exploitation of marine resources in Southern Africa with particular reference to shellfish gathering: Opportunities and continuities. Pyrenae, 41, 7–52.Google Scholar
  94. Jerardino, A. (2016). On the origins and significance of Pleistocene coastal resource use in southern Africa with particular reference to shellfish gathering. Journal of Anthropological Archaeology, 41, 213–230.Google Scholar
  95. Jerardino, A., & Marean, C. W. (2010). Shellfish gathering, marine palaeoecology and modern human behavior: Perspectives from Cave PP13B, Pinnacle Point, South Africa. Journal of Human Evolution, 59, 412–424.Google Scholar
  96. Kandel, A. W., Bolus, M., Bretzke, K., Bruch, A. A., Haidle, M. N., Hertler, C., et al. (2016). Increasing behavioral flexibility? An integrative macro-scale approach to understanding the Middle Stone Age of southern Africa. Journal of Archaeological Method and Theory, 23, 623–668.Google Scholar
  97. Kelly, R. L. (2003). Colonization of new land by hunter-gatherers. In R. Marcy & S. James (Eds.), The colonization of unfamiliar landscapes: The archaeology of adaptation (pp. 44–58). New York: Routledge.Google Scholar
  98. Klein, R. G. (1976). The mammalian fauna of the Klasies River mouth sites, southern Cape Province, South Africa. The South African Archaeological Bulletin, 31, 75–98.Google Scholar
  99. Klein, R. G., Avery, G., Cruz-Uribe, K., Halkett, D. J., Parkington, J. E., Steele, T., et al. (2004). The Ysterfontein 1 Middle Stone Age site, South Africa, and early human exploitation of coastal resources. Proceedings of the National Academy of Sciences USA, 101, 5708–5715.Google Scholar
  100. Klein, R. G., & Bird, D. W. (2016). Shellfishing and human evolution. Journal of Anthropological Archaeology, 44B, 198–205.Google Scholar
  101. Klein, R. G., & Cruz-Uribe, K. (1996). Exploitation of large bovids and seals at Middle and Later Stone Age sites in South Africa. Journal of Human Evolution, 31, 315–334.Google Scholar
  102. Klein, R. G., & Scott, K. (1986). Re-analysis of faunal assemblages from the Haua Fteah and other Late Quaternary sites in Cyrenaican Libya. Journal of Archaeological Science, 13, 515–542.Google Scholar
  103. Klein, R. G., & Steele, T. E. (2008). Gibraltar data are too sparse to inform on Neanderthal exploitation of coastal resources. Proceedings of the National Academy of Sciences of the United States of America, 105, 20047.Google Scholar
  104. Klein, R. G., & Steele, T. E. (2013). Archaeological shellfish size and later human evolution in Africa. Proceedings of the National Academy of Sciences of the United States of America, 110, 10910–10915.Google Scholar
  105. Kolodny, O., Creanza, N., & Feldman, M. W. (2016). Game-changing innovations: How culture can change the parameters of its own evolution and induce abrupt cultural shifts. PLoS Computational Biology, 12, e1005302.Google Scholar
  106. Kyriacou, K., Blackhurst, D. M., Parkington, J. E., & Marais, A. D. (2016). Marine and terrestrial foods as a source of brain-selective nutrients for early modern humans in the southwestern Cape, South Africa. Journal of Human Evolution, 97, 86–96.Google Scholar
  107. Kyriacou, K., Parkington, J. E., Marais, A. D., & Braun, D. R. (2014). Nutrition, modernity and the archaeological record: Coastal resources and nutrition among Middle Stone Age hunter-gatherers on the Western Cape coast of South Africa. Journal of Human Evolution, 77, 64–73.Google Scholar
  108. Kyriacou, K., Parkington, J. E., Will, M., Kandel, A. W., & Conard, N. J. (2015). Middle and Later Stone Age shellfish exploitation strategies and coastal foraging at Hoedjiespunt and Lynch Point, Saldanha Bay, South Africa. Journal of Archaeological Science, 57, 197–206.Google Scholar
  109. Langejans, G. H. J., van Niekerk, K. L., Dusseldorp, G. L., & Thackeray, J. F. (2012). Middle Stone Age shellfish exploitation: Potential indications for mass collecting and resource intensification at Blombos Cave and Klasies River, South Africa. Quaternary International, 280, 80–94.Google Scholar
  110. Langley, M. C., O’Connor, S., & Piotto, E. (2016). 42,000-year-old worked and pigment-stained Nautilus shell from Jerimalai (Timor-Leste): Evidence for an early coastal adaptation in ISEA. Journal of Human Evolution, 97, 1–16.Google Scholar
  111. Linstädter, J., Eiwanger, J., Mikdad, A., & Weniger, G. C. (2012). Human occupation of Northwest Africa: A review of Middle Palaeolithic to Epipalaeolithic sites in Morocco. Quaternary International, 274, 158–174.Google Scholar
  112. Luncz, L. V., Tan, A., Haslam, M., Kulik, L., Proffitt, T., Malaivijtnond, S., et al. (2017). Resource depletion through primate stone technology. eLife, 6, e23647.Google Scholar
  113. Marean, C. W. (1986). On the seal remains from Klasies River Mouth: An evaluation of Binford’s interpretations. Current Anthropology, 27, 365–368.Google Scholar
  114. Marean, C. W. (2010). Pinnacle Point Cave 13B (Western Cape Province, South Africa) in context: The Cape Floral kingdom, shellfish, and modern human origins. Journal of Human Evolution, 59, 425–443.Google Scholar
  115. Marean, C. W. (2011). Coastal South Africa and the co-evolution of the modern human lineage and the coastal adaptation. In N. Bicho, J. A. Haws, & L. G. Davis (Eds.), Trekking the shore: Changing coastlines and the antiquity of coastal settlement (pp. 421–440). New York: Springer.Google Scholar
  116. Marean, C. W. (2014). The origins and significance of coastal resource use in Africa and Western Eurasia. Journal of Human Evolution, 77, 17–40.Google Scholar
  117. Marean, C. W. (2016). The transition to foraging for dense and predictable resources and its impact on the evolution of modern humans. Philosophical Transactions of the Royal Society B, 371, 20150239.Google Scholar
  118. Marean, C. W., Bar-Matthews, M., Bernatchez, J., et al. (2007). Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature, 449, 905–908.Google Scholar
  119. Martínez, J. I. Z., Travaini, A., Zapata, S., Procopio, D., & Santillán, M. Á. (2012). The ecological role of native and introduced species in the diet of the puma Puma concolor in southern Patagonia. Oryx, 46(1), 106–111.Google Scholar
  120. McBrearty, S., & Brooks, A. S. (2000). The revolution that wasn’t: A new interpretation of the origin of modern human behaviour. Journal of Human Evolution, 39, 453–563.Google Scholar
  121. McHenry, H. M., & Coffing, K. (2000). Australopithecus to Homo: Transformations in body and mind. Annual Review of Anthropology, 29, 125–146.Google Scholar
  122. Meehan, B. (1982). Shell bed to shell midden. Canberra: Australian Institute of Aboriginal Studies.Google Scholar
  123. Mellars, P., Gori, K. C., Carr, M., Soares, P. A., & Richards, M. B. (2013). Genetic and archaeological perspectives on the initial modern human colonization of southern Asia. Proceedings of the National Academy of Sciences of the United States of America, 110, 10699–10700.Google Scholar
  124. Milliken, S. (2007). Neanderthals, anatomically modern humans, and ‘modern human behaviour’ in Italy. Oxford Journal of Archaeology, 26, 331–358.Google Scholar
  125. Milner, N., Craig, O. E., & Bailey, G. N. (Eds.). (2007). Shell middens in Atlantic Europe. Oxford: Oxbow Books.Google Scholar
  126. Monroe, E. J., Goodrich, L., & Jones, J. B. (2012). Archaeological data recovery at site 44WM0304, associated with the Route 205 Project, Westmoreland County, Virginia. Richmond: Department of Transportation.Google Scholar
  127. Moss, M. L. (1993). Shellfish, gender, and status on the northwest coast: Reconciling archeological, ethnographic, and ethnohistorical records of the Tlingit. American Anthropologist, 95, 631–652.Google Scholar
  128. Muller, G. B., & Wagner, G. P. (1991). Novelty in evolution: Restructuring the concept. Annual Review of Ecology Evolution and Systematics, 22, 229–256.Google Scholar
  129. Nami, M., & Moser, J. (2010). La grotte d’Ifri n’Ammar: Le paléolithique moyen. Bonn: Kommission für Archaologie Außereuropäischer Kulturen.Google Scholar
  130. Nespoulet, R., Debénath, A., El Hajraoui, A. M., et al. (2008). Le contexte archéologique des restes humains Atériens de la région de Témara (Maroc) Apport des fouilles des grottes d’El Mnasra et d’El Harhoura 2. In H. Aouraghe, H. Haddoumi, & K. Hammouti (Eds.), Le Quaternaire marocain dans son contexte Méditerranéen. Actes de la Quatrième Rencontre des Quaternaristes Marocains (RQM4), Oujda 2007 (pp. 356–375). Oujda: Faculté des Sciences d’Oujda.Google Scholar
  131. Niang, K., Blinkhorn, J., & Ndiaye, M. (2018). The oldest Stone Age occupation of coastal West Africa and its implications for modern human dispersals: New insight from Tiémassas. Quaternary Science Reviews, 188, 167–173.Google Scholar
  132. Norman, K., Inglis, J., Clarkson, C., Faith, J. T., Shulmeister, J., & Harris, D. (2018). An early colonisation pathway into northwest Australia 70–60,000 years ago. Quaternary Science Reviews, 180, 229–239.Google Scholar
  133. Nouet, J., Chevallard, C., Farre, B., et al. (2015). Limpet shells from the Aterian Level 8 of El Harhoura 2 Cave (Témara, Morocco): Preservation state of crossed-foliated layers. PLoS ONE, 10, e0137162.Google Scholar
  134. O’Brien, M. J., & Holland, T. D. (1992). The role of adaptation in archaeological explanation. American Antiquity, 57, 36–59.Google Scholar
  135. O’Connor, S., Ono, R., & Clarkson, C. (2011). Pelagic fishing at 42,000 years before the present and the maritime skills of modern humans. Science, 334, 1117–1121.Google Scholar
  136. Oppenheimer, S. (2009). The great arc of dispersal of modern humans: Africa to Australia. Quaternary International, 202, 2–13.Google Scholar
  137. Panagopoulou, E., Karkanas, P., Tsartsidou, G., Kotjabopoulou, E., Harvati, K., & Ntinou, M. (2013). Late Pleistocene archaeological and fossil human evidence from Lakonis cave, southern Greece. Journal of Field Archaeology, 29, 323–349.Google Scholar
  138. Parkington, J. E. (2001). Milestones: The impact of systematic exploitation of marine foods on human evolution. In P. V. Tobias, M. A. Raath, J. Moggi-Cechi, & G. A. Doyle (Eds.), Humanity from African naissance to coming millennia (pp. 327–336). Florence: Firenze University Press.Google Scholar
  139. Parkington, J. E. (2003). Middens and moderns: Shellfishing and the Middle Stone Age of the Western Cape, South Africa. South African Journal of Science, 99, 243–247.Google Scholar
  140. Parkington, J. E. (2010). Coastal diet, encephalization, and innovative behaviors in the late Middle Stone Age of Southern Africa. In S. C. Cunnane & K. M. Stewart (Eds.), Human brain evolution: The influence of freshwater and marine food resources (pp. 189–203). Hoboken: Wiley-Blackwell.Google Scholar
  141. Pearce, D. G., & Bonneau, A. (2018). Trouble on the dating scene. Nature Ecology and Evolution, 2, 925–926.Google Scholar
  142. Pickering, R., Jacobs, Z., Herries, A. I. R., Karkanas, P., Bar-Matthews, M., Woodhead, J. D., et al. (2013). Paleoanthropologically significant South African sea caves dated to 1.1–1.0 million years using a combination of U-Pb, TT-OSL and Palaeomagnetism. Quaternary Science Reviews, 65, 39–52.Google Scholar
  143. Plug, I. (2006). Aquatic animals and their associates from the Middle Stone Age levels at Sibudu. Southern African Humanities, 18, 289–299.Google Scholar
  144. Rabett, R. J. (2018). The success of failed Homo sapiens dispersals out of Africa and into Asia. Nature Ecology and Evolution, 2, 212–219.Google Scholar
  145. Ramos, J., Bernal, D., Dominguez-Bella, S., et al. (2008). The Benzu rockshelter: A Middle Palaeolithic site on the North African coast. Quaternary Science Reviews, 27, 2210–2218.Google Scholar
  146. Ramos, J., Domingez-Bella, S., Cantillo, J. J., et al. (2011). Marine resources exploitation by Palaeolithic hunter-fisher-gatherers and Neolithic tribal societies in the historical region of the Strait of Gibraltar. Quaternary International, 239, 104–113.Google Scholar
  147. Ramos-Muñoz, J., Cantillo-Duarte, J. J., Bernal-Casasola, D., et al. (2016). Early use of marine resources by Middle/Upper Pleistocene human societies: The case of Benzú rockshelter (northern Africa). Quaternary International, 407, 16–28.Google Scholar
  148. Richards, M. P., & Trinkaus, E. (2009). Isotopic evidence for the diets of European Neanderthals and early modern humans. Proceedings of the National Academy of Sciences, 106, 16034–16039.Google Scholar
  149. Richerson, P. J., & Boyd, R. (2005). Not by genes alone: How culture transformed human evolution. Chicago: University of Chicago Press.Google Scholar
  150. Richter, D., Grün, R., Joannes-Boyau, R., et al. (2017). The age of the hominin fossils from Jebel Irhoud, Morocco, and the origins of the Middle Stone Age. Nature, 546, 293–296.Google Scholar
  151. Rick, T. C., Erlandson, J. M., Vellanoweth, R. L., & Braje, T. J. (2005). From Pleistocene mariners to complex hunter-gatherers: The archaeology of the California Channel Islands. Journal of World Prehistory, 19, 169–228.Google Scholar
  152. Rightmire, G. P. (2004). Brain size and encephalization in early to Mid-Pleistocene Homo. American Journal of Physical Anthropology, 124, 109–123.Google Scholar
  153. Roberts, P., Henshilwood, C. S., van Niekerk, K. L., et al. (2016). Climate, environment and early human innovation: Stable isotope and faunal proxy evidence from archaeological sites (98–59 ka) in the Southern Cape, South Africa. PLoS ONE, 11, e0157408.Google Scholar
  154. Roebroeks, W., & Soressi, M. (2016). Neandertals revised. Proceedings of the National Academy of Sciences of the United States of America, 113, 6372–6379.Google Scholar
  155. Romagnoli, F., Baena, J., & Sarti, L. (2016). Neanderthal retouched shell tools and Quina economic and technical strategies: An integrated behaviour. Quaternary International, 407, 29–44.Google Scholar
  156. Ruff, C. B., Trinkaus, E., & Holliday, T. W. (1997). Body mass and encephalization in Pleistocene Homo. Nature, 387, 173–176.Google Scholar
  157. Salazar-García, D. C., Power, R. C., Serra, A. S., Villaverde, V., Walker, M. J., & Henry, A. G. (2013). Neanderthal diets in central and southeastern Mediterranean Iberia. Quaternary International, 318, 3–18.Google Scholar
  158. Sauer, C. O. (1962). Seashore—Primitive home of Man? Proceedings of the American Philosophical Society, 106, 41–47.Google Scholar
  159. Smith, T. M., & Smith, R. L. (2012). Elements of ecology (8th ed.). San Francisco: Benjamin Cummings.Google Scholar
  160. Steele, T. E. (2012). Late Pleistocene human subsistence in Northern Africa: The state of our knowledge and placement in a continental context. In J. J. Hublin & S. P. McPherron (Eds.), Modern origins: A North African perspective (pp. 107–125). Dordrecht: Springer.Google Scholar
  161. Steele, T. E., & Alvarez-Fernández, E. (2011). Initial investigations into the exploitation of coastal resources in North Africa during the late Pleistocene at Grotte des Contrebandiers, Morocco. In N. Bicho, J. A. Haws, & L. G. Davis (Eds.), Trekking the shore: Changing coastlines and the antiquity of coastal settlement (pp. 383–403). New York: Springer.Google Scholar
  162. Steele, T. E., & Klein, R. G. (2008). Intertidal shellfish use during the Middle and Later Stone Age of South Africa. Archaeofauna, 17, 63–76.Google Scholar
  163. Steele, T. E., & Klein, R. G. (2013). The Middle and Later Stone Age faunal remains from Diepkloof Rock Shelter, Western Cape, South Africa. Journal of Archaeological Science, 40, 3453–3462.Google Scholar
  164. Steele, T. E., Mackay, A., Orton, J., & Schwortz, S. (2012). Varsche Rivier 003, a new Middle Stone Age site in southern Namaqualand, South Africa. The South African Archaeological Bulletin, 67, 108–119.Google Scholar
  165. Stern, J. T. (1970). The meaning of ‘adaptation’ and its relation to the phenomenon of natural selection. Evolutionary Biology, 4, 39–66.Google Scholar
  166. Stewart, K. M. (2010). The case for exploitation of wetlands environments and foods by pre-sapiens hominins. In S. C. Cunnane & K. M. Stewart (Eds.), Human brain evolution: The influence of freshwater and marine food resources (pp. 137–172). Hoboken: Wiley-Blackwell.Google Scholar
  167. Stewart, K. M. (2014). Environmental change and hominin exploitation of C4-based resources in wetland/savanna mosaics. Journal of Human Evolution, 77, 1–16.Google Scholar
  168. Stiner, M. C. (1993). Small animal exploitation and its relation to hunting, scavenging, and gathering in the Italian Mousterian. Archeological Papers of the American Anthropological Association, 4(1), 107–125.Google Scholar
  169. Stiner, M. C. (1994). Honor among thieves: A zooarchaeological study of Neandertal Ecology. Princeton: Princeton University Press.Google Scholar
  170. Stiner, M. C. (2009). Prey choice, site occupation intensity and economic diversity in the Middle–early Upper Palaeolithic at the Üçağizli Caves, Turkey. Before Farming, 2009(3), 1–20.Google Scholar
  171. Stiner, M. C. (2013). An unshakable Middle Paleolithic? Trends versus conservatism in the predatory niche and their social ramifications. Current Anthropology, 54(S8), S288–S304.Google Scholar
  172. Stiner, M. C., Munro, N. D., Surovell, T. A., et al. (2000). The Tortoise and the hare: Small-game use, the broad-spectrum revolution, and Paleolithic demography. Current Anthropology, 41, 39–79.Google Scholar
  173. Stoetzel, E., Campmas, E., Michel, P., et al. (2014). Context of modern human occupations in North Africa: Contribution of the Témara caves data. Quaternary International, 320, 143–161.Google Scholar
  174. Stonehouse, W. (2014). Does consumption of LC Omega-3 PUFA enhance cognitive performance in healthy school-aged children and throughout adulthood? Evidence from clinical trials. Nutrients, 6, 2730–2758.Google Scholar
  175. Stringer, C. (2000). Coasting out of Africa. Nature, 405, 24–27.Google Scholar
  176. Stringer, C. B., Finlayson, J. C., Barton, N., et al. (2008). Neanderthal exploitation of marine mammals in Gibraltar. Proceedings of the National Academy of Sciences of the United States of America, 105, 14319–14324.Google Scholar
  177. Tattersall, I. (2010). Macroevolutionary patterns, exaptation, and emergence in the evolution of the human brain and cognition. In S. C. Cunnane & K. M. Stewart (Eds.), Human brain evolution: The influence of freshwater and marine food resources (pp. 1–12). Hoboken: Wiley-Blackwell.Google Scholar
  178. Thackeray, J. F. (1988). Molluscan fauna from Klasies River, South Africa. South African Archaeological Bulletin, 43, 27–32.Google Scholar
  179. Tourloukis, V., & Harvati, K. (2018). The Palaeolithic record of Greece: A synthesis of the evidence and a research agenda for the future. Quaternary International, 466, 48–65.Google Scholar
  180. Tourloukis, V., Thompson, N., Garefalakis, C., Karkanas, P., Konidaris, G. E., Panagopoulou, E., et al. (2016). New middle Palaeolithic sites from the Mani peninsula, southern Greece. Journal of Field Archaeology, 41, 68–83.Google Scholar
  181. Trevor-Deutsch, B., & Bryant, V. M. (1978). Analysis of suspected human coprolites from Terra Amata, Nice, France. Journal of Archaeological Science, 5, 387–390.Google Scholar
  182. Van Niekerk, K. L. (2011). Marine fish Exploitation during the Middle and Later Stone Age of South Africa. PhD thesis. University of Cape Town.Google Scholar
  183. Vanhaeren, M., d’Errico, F., Stringer, C., James, S. L., Todd, J. A., & Mienis, H. K. (2006). Middle Paleolithic shell beads in Israel and Algeria. Science, 312, 1785–1788.Google Scholar
  184. Veth, P., Ward, I., Manne, T., & Ulm, S. (2017). Early human occupation of a maritime desert, Barrow Island, North-West Australia. Quaternary Science Reviews, 168, 19–29.Google Scholar
  185. Villa, P. (1983). Terra Amata and the Middle Pleistocene archaeological record of southern France. Berkeley: University of California Press.Google Scholar
  186. Villa, P., & Roebroeks, W. (2014). Neandertal demise: An archaeological analysis of the modern human superiority complex. PLoS ONE, 9, e96424.Google Scholar
  187. Wade, L. (2017). On the trail of ancient mariners. Science, 357, 542–545.Google Scholar
  188. Wadley, L. (2015). Those marvellous millennia: The Middle Stone Age of southern Africa. Azania: Archaeological Research in Africa, 50, 155–226.Google Scholar
  189. Westaway, K. E., Louys, J., Awe, R. D., et al. (2017). An early modern human presence in Sumatra 73000–63000 years ago. Nature, 548, 322.Google Scholar
  190. West-Eberhard, W. J. (1992). Adaptation: Current usages. In E. F. Keller & E. A. Lloyd (Eds.), Keywords in evolutionary biology (pp. 13–18). Cambridge: Harvard University Press.Google Scholar
  191. Will, M., Kandel, A. W., & Conard, N. J. (2015). Coastal adaptations and settlement systems on the Cape and Horn of Africa during the Middle Stone Age. In N. J. Conard & A. Delagnes (Eds.), Settlement dynamics of the Middle Paleolithic and Middle Stone Age (Vol. IV, pp. 61–89). Tübingen: Kerns Verlag.Google Scholar
  192. Will, M., Kandel, A. W., Kyriacou, K., & Conard, N. J. (2016). An evolutionary perspective on coastal adaptations by modern humans during the Middle Stone Age of Africa. Quaternary International, 404, 68–86.Google Scholar
  193. Will, M., Parkington, J. E., Kandel, A. W., & Conard, N. J. (2013). Coastal adaptations and the Middle Stone Age lithic assemblages from Hoedjiespunt 1 in the Western Cape, South Africa. Journal of Human Evolution, 64, 518–537.Google Scholar
  194. Witte, A. V., Kerti, L., Hermannstädter, H. M., et al. (2014). Long-chain omega-3 fatty acids improve brain function and structure in older adults. Cerebral Cortex, 24, 3059–3068.Google Scholar
  195. Yesner, D. R. (1980). Maritime hunter-gatherers: Ecology and prehistory. Current Anthropology, 22, 727–750.Google Scholar
  196. Zilhão, J., Angelucci, D., Badal, E., et al. (2010). Symbolic use of marine shells and mineral pigments by Iberian Neanderthals. Proceedings of the National Academy of Sciences of the United States of America, 107, 1023–1028.Google Scholar
  197. Zilhão, J., & Villaverde, V. (2008). The Middle Paleolithic of Murcia. Treballs d’Arqueologia, 14, 229–248.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Gonville and Caius CollegeUniversity of CambridgeCambridgeUK
  2. 2.PAVE Research Group, Department of Archaeology and Anthropology, Division of Biological AnthropologyUniversity of CambridgeCambridgeUK
  3. 3.Department of Early Prehistory and Quaternary EcologyUniversity of TübingenTübingenGermany
  4. 4.Heidelberg Academy of Sciences and HumanitiesROCEEH – The Role of Culture in Early Expansions of HumansTübingenGermany
  5. 5.Senckenberg Center for Human Evolution and Quaternary EcologyUniversity of TübingenTübingenGermany

Personalised recommendations