Advertisement

Limits for Partial Maxima of Gaussian Random Vectors

  • James KuelbsEmail author
  • Joel Zinn
Article
  • 12 Downloads

Abstract

We obtain almost sure limit theorems for partial maxima of norms of a sequence of Banach-valued Gaussian random variables.

Keywords

Maxima Law of large numbers Gaussian 

Mathematics Subject Classification (2010)

Primary 60B12 60F15 Secondary 28C20 60G10 60G15 

Notes

Supplementary material

10959_2019_892_MOESM1_ESM.pdf (134 kb)
Supplementary material 1 (pdf 133 KB)

References

  1. 1.
    Berman, S.M.: A law of large numbers for the maximum in a stationary Gaussian sequence. Ann. Math. Stat. 33, 93–97 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Breiman, L.: Probability. Addison-Wesley Publishing Company, Reading, Mass.-London-Don Mills, Ont. (1968)Google Scholar
  3. 3.
    Bochner, S., Taylor, A.E.: Linear functionals on certain spaces of abstractly-valued functions. Ann. Math. (2) 39(4), 913–944 (1938)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Carmona, R., Kôno, N.: Convergence en loi et lois du logarithme itéré pour les vecteurs gaussiens. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 36(3), 241–267 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chow, Y.S., Teicher, H.: Probability Theory: Independence, Interchangeability, Martingales, 1st edn. Springer, New York (1978)CrossRefzbMATHGoogle Scholar
  6. 6.
    Darling, D.A., Erdös, P.: A limit theorem for the maximum of normalized sums of independent random variables. Duke Math. J. 23, 143–155 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dierickx, G., Einmahl, U.: A general Darling–Erdos theorem in Euclidean space (2016), pp. 1–24.  https://doi.org/10.1007/s10959-016-0728-y
  8. 8.
    Goodman, V., Kuelbs, J.: Rates of clustering for some Gaussian self-similar processes. Probab. Theory Relat. Fields 88(1), 47–75 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Goodman, V., Kuelbs, J., Rates of clustering for weakly convergent Gaussian vectors and some applications. In: Probability in Banach Spaces, 8 (Brunswick, ME: Progress in Probability, vol. 30. Birkhäuser Boston, Boston, MA 1992, 304–324 (1991)Google Scholar
  10. 10.
    Goodman, V., Kuelbs, J., Zinn, J.: Some results on the LIL in Banach space with applications to weighted empirical processes. Ann. Probab. 9(5), 713–752 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Goodman, V.: Characteristics of normal samples. Ann. Probab. 16(3), 1281–1290 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gross, L.: Potential theory on Hilbert space. J. Funct. Anal. 1, 123–181 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kuelbs, J.: A strong convergence theorem for Banach space valued random variables. Ann. Probab. 4(5), 744–771 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kuelbs, J., Zinn, J.: Appendix to “limits for partial maxima of Gaussian random vectors”. arXiv:1902.02819 [math.PR] (2019)
  15. 15.
    Raoul, D.: LePage, Log log law for Gaussian processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 25, 103–108 (1972/1973)Google Scholar
  16. 16.
    Ledoux, M., Talagrand, M.: Characterization of the law of the iterated logarithm in Banach spaces. Ann. Probab. 16(3), 1242–1264 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Pickands III, J.: Maxima of stationary Gaussian processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 7, 190–223 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Robbins, H.: Some aspects of the sequential design of experiments. Bull. Am. Math. Soc. 58, 527–535 (1952)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of WisconsinMadisonUSA
  2. 2.Department of MathematicsTexas A&M UniversityCollege StationUSA

Personalised recommendations