Advertisement

Journal of Theoretical Probability

, Volume 33, Issue 1, pp 1–21 | Cite as

Independent Linear Forms on the Group \(\varOmega _p\)

  • Margaryta MyronyukEmail author
Article
  • 13 Downloads

Abstract

Let \(\varOmega _p\) be the group of p-adic numbers, and \( \xi _1\), \(\xi _2\), \(\xi _3\) be independent random variables with values in \(\varOmega _p\) and distributions \(\mu _1\), \(\mu _2\), \(\mu _3\). Let \(\alpha _j, \beta _j, \gamma _j\) be topological automorphisms of \(\varOmega _p\). We consider linear forms \(L_1 = \alpha _1\xi _1 + \alpha _2 \xi _2+ \alpha _3 \xi _3\), \(L_2=\beta _1\xi _1 + \beta _2 \xi _2+ \beta _3 \xi _3\) and \(L_3=\gamma _1\xi _1 + \gamma _2 \xi _2+ \gamma _3 \xi _3\). We describe all coefficients of the linear forms for which the independence of \(L_1\), \(L_2\) and \(L_3\) implies that distributions \(\mu _1\), \(\mu _2\), \(\mu _3\) are idempotent. This theorem is an analogue of the well-known Skitovich–Darmois theorem, where a Gaussian distribution on the real line is characterized by the independence of two linear forms.

Keywords

Group of p-adic numbers Characterization theorem Skitovich–Darmois theorem 

Mathematics Subject Classification (2010)

60B15 62E10 43A35 

Notes

Acknowledgements

The author is grateful to a reviewer for careful reading of the article and for valuable remarks.

References

  1. 1.
    Darmois, G.: Analyse generale des liaisons stochastiques. Rev. Inst. Int. Stat. 21, 2–8 (1953)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Feldman, G.M.: Characterization of the Gaussian distribution on groups by the independence of linear statistics. Sib. Math. J. 31(2), 336–345 (1990)CrossRefGoogle Scholar
  3. 3.
    Feldman, G.M.: On the Skitovich–Darmois theorem on Abelian groups. Theory Probab. Appl. 37, 621–631 (1992)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Feldman, G.M.: On the Skitovich–Darmois theorem on compact groups. Theory Probab. Appl. 41, 768–773 (1996)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Feldman, G.M.: The Skitovich–Darmois theorem for discrete periodic Abelian groups. Theory Probab. Appl. 42, 611–617 (1997)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Feldman, G.M.: More on the Skitovich–Darmois theorem for finite Abelian groups. Theory Probab. Appl. 45, 507–511 (2000)CrossRefGoogle Scholar
  7. 7.
    Feldman, G. M.: Functional equations and characterization problems on locally compact Abelian groups. EMS Tracts in Mathematics, vol. 5, Zurich. European Mathematical Society (2008)Google Scholar
  8. 8.
    Feldman, G.M.: On the Skitovich–Darmois theorem for the group of p-adic numbers. J. Theor. Probab. 28, 539–549 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Feldman, G.M., Graczyk, P.: On the Skitovich–Darmois theorem on compact Abelian groups. J. Theor. Probab. 13, 859–869 (2000)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Feldman, G.M., Graczyk, P.: On the Skitovich–Darmois theorem for discrete abelian groups. Theory Probab. Appl. 49, 527–531 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Feldman, G.M., Graczyk, P.: The Skitovich–Darmois theorem for locally compact Abelian groups. J. Aust. Math. Soc. 88, 339–352 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis, vol. 1. Springer, Berlin (1963)CrossRefGoogle Scholar
  13. 13.
    Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis, vol. 2. Springer, New York (1970)CrossRefGoogle Scholar
  14. 14.
    Kagan, A.M., Linnik, Y.V., Rao, C.R.: Characterization Problems in Mathematical Statistics. Wiley Series in Probability and Mathematical Statistics. Wiley, New York (1973)zbMATHGoogle Scholar
  15. 15.
    Mazur, I.P.: Skitovich–Darmois theorem for finite Abelian groups. Ukr. Math. J. 63, 1719–1732 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Mazur, I.P.: Skitovich–Darmois theorem for discrete and compact totally disconnected Abelian groups. Ukr. Math. J. 65, 10541070 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Mazur, I.P.: On a characterization of the Haar distribution on compact Abelian groups. J. Math. Phys. Anal. Geom. 10, 126–133 (2014)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Myronyuk, M.V.: On the Skitovich–Darmous and Heyde theorem in a Banach space. Ukr. Math. J. 60, 1437–1447 (2008)CrossRefGoogle Scholar
  19. 19.
    Myronyuk, M., Feldman, G.: Independent linear statistics on the cylinders. Theory Probab. Appl. 59, 252–275 (2014)MathSciNetGoogle Scholar
  20. 20.
    Neuenschwander, D.: Gauss measures in the sense of Bernstein on the Heisenberg group. Probab. Math. Statist. 14, 253–256 (1993)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Neuenschwander, D., Roynette, B., Schott, R.: Charactarization of Gauss measures on nilpotent Lie groups and symmetric spaces. C. R. Acad. Sci. Ser. I(324), 87–92 (1997)zbMATHGoogle Scholar
  22. 22.
    Neuenschwander, B., Schott, R.: The Bernstein and Skitovich–Darmois characterization theorems for Gaussian distributions on groups, symmetric spaces, and quantum groups. Expos. Math. 15, 289–314 (1997)zbMATHGoogle Scholar
  23. 23.
    Skitovich, V.P.: On a property of a normal distribution (Russian). Dokl. Akad. Nauk SSSR 89, 217–219 (1953)Google Scholar
  24. 24.
    Stapleton, J.H.: A characterization of the uniform distribution on a compact topological group. Ann. Math. Stat. 34, 319–326 (1963)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of UkraineKharkivUkraine

Personalised recommendations