Journal of Theoretical Probability

, Volume 32, Issue 2, pp 737–764 | Cite as

Harnack Inequality for Subordinate Random Walks

  • Ante Mimica
  • Stjepan ŠebekEmail author


In this paper, we consider a large class of subordinate random walks X on the integer lattice \(\mathbb {Z}^d\) via subordinators with Laplace exponents which are complete Bernstein functions satisfying some mild scaling conditions at zero. We establish estimates for one-step transition probabilities, the Green function and the Green function of a ball, and prove the Harnack inequality for nonnegative harmonic functions.


Random walk Subordination Harnack inequality Harmonic function Green function Poisson kernel 

Mathematics Subject Classification (2010)

Primary: 60J45 Secondary: 60G50 60J10 05C81 



This work has been supported in part by Croatian Science Foundation under the project 3526.


  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions. National Bureau of Standards, Gaithersburg (1972)zbMATHGoogle Scholar
  2. 2.
    Bass, R.F., Kumagai, T.: Symmetric Markov Chains on \(\mathbb{Z}^d\) with Unbounded Range. Transactions of the American Mathematical Society 360, 2041–2075 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bass, R.F., Levin, D.A.: Transition Probabilities for Symmetric Jump Processes. Transactions of the American Mathematical Society 354, 2933–2953 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bendikov, A., Cygan, W.: \(\alpha \) - Stable Random Walk has Massive Thorns, arXiv:1307.4947v3 (2016)
  5. 5.
    Bendikov, A., Cygan, W., Trojan, B.: Limit Theorems for Random Walks, arXiv:1504.01759v2 (2015)
  6. 6.
    Bendikov, A., Saloff-Coste, L.: Random walks on groups and discrete subordination. Mathematische Nachrichten 285, 580–605 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hebisch, W., Saloff-Coste, L.: Gaussian Estimates for Markov Chains and Random Walks on Groups. Annals of Probability 21, 673–709 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kim, P., Song, R., Vondraček, Z.: Global uniform boundary Harnack principle with explicit decay rate and its application. Stochastic Processes and their Applications 124, 235–267 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lawler, G.F.: Intersections of Random Walks. Birkhäuser, Basel (1996)zbMATHGoogle Scholar
  10. 10.
    Lawler, G.F., Polaski, W.: Harnack inequalities and Difference Estimates for Random Walks with Infinite Range. Journal of Theoretical Probability 6, 781–802 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Mimica, A., Kim, P.: Harnack inequalities for subordinate Brownian motions. Electronic Journal of Probability 37, 1–23 (2012)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge (1997)CrossRefzbMATHGoogle Scholar
  13. 13.
    Schilling, R., Song, R., Vondraček, Z.: Bernstein functions: Theory and applications, 2nd edn. De Gruyter, Berlin (2012)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceUniversity of ZagrebZagrebCroatia
  2. 2.Department of Applied Mathematics, Faculty of Electrical Engineering and ComputingUniversity of ZagrebZagrebCroatia

Personalised recommendations