Journal of Theoretical Probability

, Volume 32, Issue 1, pp 353–394

Empirical Distributions of Eigenvalues of Product Ensembles

• Tiefeng Jiang
• Yongcheng Qi
Article

Abstract

Assume a finite set of complex random variables form a determinantal point process; we obtain a theorem on the limit of the empirical distribution of these random variables. The result is applied to two types of n-by-n random matrices as n goes to infinity. The first one is the product of m i.i.d. (complex) Ginibre ensembles, and the second one is the product of truncations of m independent Haar unitary matrices with sizes $$n_j\times n_j$$ for $$1\le j \le m$$. Assuming m depends on n, by using the special structures of the eigenvalues we developed, explicit limits of spectral distributions are obtained regardless of the speed of m compared to n. For the product of m Ginibre ensembles, as m is fixed, the limiting distribution is known by various authors, e.g., Götze and Tikhomirov (On the asymptotic spectrum of products of independent random matrices, 2010. http://arxiv.org/pdf/1012.2710v3.pdf), Bordenave (Electron Commun Probab 16:104–113, 2011), O’Rourke and Soshnikov (Electron J Probab 16(81):2219–2245, 2011) and O’Rourke et al. (J Stat Phys 160(1):89–119, 2015). Our results hold for any $$m\ge 1$$ which may depend on n. For the product of truncations of Haar-invariant unitary matrices, we show a rich feature of the limiting distribution as $$n_j/n$$’s vary. In addition, some general results on arbitrary rotation-invariant determinantal point processes are also derived. In particular, we obtain an inequality for the fourth moment of linear statistics of complex random variables forming a determinantal point process. This inequality is known for the complex Ginibre ensemble only (Hwang in Random matrices and their applications (Brunswick, Maine, 1984), Contemporary Mathematics, American Mathematics Society, Providence, vol 50, pp 145–152, 1986). Our method is the determinantal point process rather than the contour integral by Hwang.

Keywords

Non-symmetric random matrix Eigenvalue Empirical distribution Determinantal point process

Mathematics Subject Classification (2010)

Primary 15B52 Secondary 60F99 60G55 62H10

Notes

Acknowledgements

We thank an anonymous referee for his/her very careful reading. The referee’s report helped us make the presentation much clearer.

References

1. 1.
Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th edn. Dover Publications, New York (1965)
2. 2.
Akemann, G., Burda, Z.: Universal microscopic correlation functions for products of independent Ginibre matrices. J. Phys. A Math. Theor. 45(46), 465201 (2012)
3. 3.
Akemann, G., Burda, Z., Kieburg, M., Nagao, T.: Universal microscopic correlation functions for products of truncated unitary matrices. J. Phys. A Math. Theor. 47, 255202 (2014)
4. 4.
Bai, Z.D.: Circular law. Ann. Probab. 25, 494–529 (1997)
5. 5.
Balakrishnan, N., Cohen, A.C.: Order Statistics and Inference: Estimation Methods. Academic Press, Cambridge (1991)
6. 6.
Bordenave, C.: On the spectrum of sum and product of non-Hermitian random matrices. Electron. Commun. Probab. 16, 104–113 (2011)
7. 7.
Bordenave, C., Chafaï, D.: Around the circular law. Probab. Surv. 9, 1–89 (2012)
8. 8.
Burda, Z.: Free products of large random matrices—a short review of recent developments. J. Phys. Conf. Ser. 473, 012002. http://arxiv.org/pdf/1309.2568v2.pdf (2013)
9. 9.
Burda, Z., Janik, R.A., Waclaw, B.: Spectrum of the product of independent random Gaussian matrices. Phys. Rev. E 81, 041132 (2010)
10. 10.
Chafaï, D., Péché, S.: A note on the second order universality at the edge of Coulomb gases on the plane. J. Stat. Phys. 156(2), 368–383 (2014)
11. 11.
Diaconis, P., Evans, S.: Linear functionals of eigenvalues of random matrices. Trans. Am. Math. Soc. 353, 2615–2633 (2001)
12. 12.
Diaconis, P., Shahshahani, M.: On the eigenvalues of random matrices. J. Appl. Probab. 31A, 49–62 (1994)
13. 13.
Dong, Z., Jiang, T., Li, D.: Circular law and arc law for truncation of random unitary matrix. J. Math. Phys. 53, 013301–14 (2012)
14. 14.
Götze, F., and Tikhomirov, T.: On the asymptotic spectrum of products of independent random matrices. http://arxiv.org/pdf/1012.2710v3.pdf (2010)
15. 15.
Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes. University Lecture Series, vol. 51. American Mathematical Society, Providence, RI (2009)Google Scholar
16. 16.
Hwang, C.R.: A brief survey on the spectral radius and the spectral distribution of large random matrices with i.i.d. entries. In: Random Matrices and Their Applications (Brunswick, Maine, 1984). Contemporary Mathematics, vol. 50, pp. 145–152. Amer. Math. Soc., Providence (1986)Google Scholar
17. 17.
Furstenberg, H., Kesten, H.: Products of random matrices. Ann. Math. Stat. 31(2), 457–469 (1960)
18. 18.
Girko, V.L.: The circular law. Teor. Veroyatnost. i Primenen 29, 669–679 (1984)
19. 19.
Jiang, T.: The entries of Haar-invariant matrices from the classical compact groups. J. Theor. Probab. 23(4), 1227–1243 (2010)
20. 20.
Jiang, T.: Approximation of Haar distributed matrices and limiting distributions of eigenvalues of Jacobi ensembles. Probab. Theory Relat. Fields 144(1), 221–246 (2009)
21. 21.
Jiang, T.: How many entries of a typical orthogonal matrix can be approximated by independent normals? Ann. Probab. 34(4), 1497–1529 (2006)
22. 22.
Jiang, T., Qi, Y.: Spectral radii of large non-Hermitian random matrices. J. Theor. Probab. 30(1), 326–364 (2017)
23. 23.
Johansson, K.: Random matrices and determinantal processes. http://arxiv.org/pdf/math-ph/0510038v1.pdf (2005)
24. 24.
Mukherjea, A.: Topics in Products of Random Matrices (Tata Institute of Fundamental Research). Narosa Pub House, Bombay (2000)Google Scholar
25. 25.
O’Rourke, S., Soshnikov, A.: Products of independent non-Hermitian random matrices. Electron. J. Probab. 16(81), 2219–2245 (2011)
26. 26.
O’Rourke, S., Renfrew, D., Soshnikov, A., Vu, V.: Products of independent elliptic random matrices. J. Stat. Phys. 160(1), 89–119 (2015)
27. 27.
Petz, D., Réffy, J.: Large deviation for the empirical eigenvalue density of truncated Haar unitary matrices. Probab. Theory Relat. Fields 133(2), 175–189 (2005)
28. 28.
Soshnikov, A.: Determinantal random point fields. Russ. Math. Surv. 55(5), 923–975 (2000)
29. 29.
Tao, T., and Vu, V.: Random matrices: universality of ESDs and the circular law. Ann. Probab. 38,2023-2065. With an appendix by Manjunath Krishnapur (2010)Google Scholar
30. 30.
Życzkowski, K., Sommers, H.: Truncation of random unitary matrices. J. Phys. A Math. Gen. 33, 2045–2057 (2000)