Advertisement

Journal of Theoretical Probability

, Volume 32, Issue 1, pp 353–394 | Cite as

Empirical Distributions of Eigenvalues of Product Ensembles

  • Tiefeng JiangEmail author
  • Yongcheng Qi
Article
  • 71 Downloads

Abstract

Assume a finite set of complex random variables form a determinantal point process; we obtain a theorem on the limit of the empirical distribution of these random variables. The result is applied to two types of n-by-n random matrices as n goes to infinity. The first one is the product of m i.i.d. (complex) Ginibre ensembles, and the second one is the product of truncations of m independent Haar unitary matrices with sizes \(n_j\times n_j\) for \(1\le j \le m\). Assuming m depends on n, by using the special structures of the eigenvalues we developed, explicit limits of spectral distributions are obtained regardless of the speed of m compared to n. For the product of m Ginibre ensembles, as m is fixed, the limiting distribution is known by various authors, e.g., Götze and Tikhomirov (On the asymptotic spectrum of products of independent random matrices, 2010. http://arxiv.org/pdf/1012.2710v3.pdf), Bordenave (Electron Commun Probab 16:104–113, 2011), O’Rourke and Soshnikov (Electron J Probab 16(81):2219–2245, 2011) and O’Rourke et al. (J Stat Phys 160(1):89–119, 2015). Our results hold for any \(m\ge 1\) which may depend on n. For the product of truncations of Haar-invariant unitary matrices, we show a rich feature of the limiting distribution as \(n_j/n\)’s vary. In addition, some general results on arbitrary rotation-invariant determinantal point processes are also derived. In particular, we obtain an inequality for the fourth moment of linear statistics of complex random variables forming a determinantal point process. This inequality is known for the complex Ginibre ensemble only (Hwang in Random matrices and their applications (Brunswick, Maine, 1984), Contemporary Mathematics, American Mathematics Society, Providence, vol 50, pp 145–152, 1986). Our method is the determinantal point process rather than the contour integral by Hwang.

Keywords

Non-symmetric random matrix Eigenvalue Empirical distribution Determinantal point process 

Mathematics Subject Classification (2010)

Primary 15B52 Secondary 60F99 60G55 62H10 

Notes

Acknowledgements

We thank an anonymous referee for his/her very careful reading. The referee’s report helped us make the presentation much clearer.

References

  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th edn. Dover Publications, New York (1965)zbMATHGoogle Scholar
  2. 2.
    Akemann, G., Burda, Z.: Universal microscopic correlation functions for products of independent Ginibre matrices. J. Phys. A Math. Theor. 45(46), 465201 (2012)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Akemann, G., Burda, Z., Kieburg, M., Nagao, T.: Universal microscopic correlation functions for products of truncated unitary matrices. J. Phys. A Math. Theor. 47, 255202 (2014)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bai, Z.D.: Circular law. Ann. Probab. 25, 494–529 (1997)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Balakrishnan, N., Cohen, A.C.: Order Statistics and Inference: Estimation Methods. Academic Press, Cambridge (1991)zbMATHGoogle Scholar
  6. 6.
    Bordenave, C.: On the spectrum of sum and product of non-Hermitian random matrices. Electron. Commun. Probab. 16, 104–113 (2011)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bordenave, C., Chafaï, D.: Around the circular law. Probab. Surv. 9, 1–89 (2012)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Burda, Z.: Free products of large random matrices—a short review of recent developments. J. Phys. Conf. Ser. 473, 012002. http://arxiv.org/pdf/1309.2568v2.pdf (2013)
  9. 9.
    Burda, Z., Janik, R.A., Waclaw, B.: Spectrum of the product of independent random Gaussian matrices. Phys. Rev. E 81, 041132 (2010)MathSciNetGoogle Scholar
  10. 10.
    Chafaï, D., Péché, S.: A note on the second order universality at the edge of Coulomb gases on the plane. J. Stat. Phys. 156(2), 368–383 (2014)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Diaconis, P., Evans, S.: Linear functionals of eigenvalues of random matrices. Trans. Am. Math. Soc. 353, 2615–2633 (2001)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Diaconis, P., Shahshahani, M.: On the eigenvalues of random matrices. J. Appl. Probab. 31A, 49–62 (1994)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Dong, Z., Jiang, T., Li, D.: Circular law and arc law for truncation of random unitary matrix. J. Math. Phys. 53, 013301–14 (2012)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Götze, F., and Tikhomirov, T.: On the asymptotic spectrum of products of independent random matrices. http://arxiv.org/pdf/1012.2710v3.pdf (2010)
  15. 15.
    Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes. University Lecture Series, vol. 51. American Mathematical Society, Providence, RI (2009)Google Scholar
  16. 16.
    Hwang, C.R.: A brief survey on the spectral radius and the spectral distribution of large random matrices with i.i.d. entries. In: Random Matrices and Their Applications (Brunswick, Maine, 1984). Contemporary Mathematics, vol. 50, pp. 145–152. Amer. Math. Soc., Providence (1986)Google Scholar
  17. 17.
    Furstenberg, H., Kesten, H.: Products of random matrices. Ann. Math. Stat. 31(2), 457–469 (1960)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Girko, V.L.: The circular law. Teor. Veroyatnost. i Primenen 29, 669–679 (1984)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Jiang, T.: The entries of Haar-invariant matrices from the classical compact groups. J. Theor. Probab. 23(4), 1227–1243 (2010)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Jiang, T.: Approximation of Haar distributed matrices and limiting distributions of eigenvalues of Jacobi ensembles. Probab. Theory Relat. Fields 144(1), 221–246 (2009)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Jiang, T.: How many entries of a typical orthogonal matrix can be approximated by independent normals? Ann. Probab. 34(4), 1497–1529 (2006)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Jiang, T., Qi, Y.: Spectral radii of large non-Hermitian random matrices. J. Theor. Probab. 30(1), 326–364 (2017)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Johansson, K.: Random matrices and determinantal processes. http://arxiv.org/pdf/math-ph/0510038v1.pdf (2005)
  24. 24.
    Mukherjea, A.: Topics in Products of Random Matrices (Tata Institute of Fundamental Research). Narosa Pub House, Bombay (2000)Google Scholar
  25. 25.
    O’Rourke, S., Soshnikov, A.: Products of independent non-Hermitian random matrices. Electron. J. Probab. 16(81), 2219–2245 (2011)MathSciNetzbMATHGoogle Scholar
  26. 26.
    O’Rourke, S., Renfrew, D., Soshnikov, A., Vu, V.: Products of independent elliptic random matrices. J. Stat. Phys. 160(1), 89–119 (2015)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Petz, D., Réffy, J.: Large deviation for the empirical eigenvalue density of truncated Haar unitary matrices. Probab. Theory Relat. Fields 133(2), 175–189 (2005)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Soshnikov, A.: Determinantal random point fields. Russ. Math. Surv. 55(5), 923–975 (2000)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Tao, T., and Vu, V.: Random matrices: universality of ESDs and the circular law. Ann. Probab. 38,2023-2065. With an appendix by Manjunath Krishnapur (2010)Google Scholar
  30. 30.
    Życzkowski, K., Sommers, H.: Truncation of random unitary matrices. J. Phys. A Math. Gen. 33, 2045–2057 (2000)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of StatisticsUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Mathematics and StatisticsUniversity of Minnesota DuluthDuluthUSA

Personalised recommendations