Advertisement

Journal of Theoretical Probability

, Volume 31, Issue 3, pp 1273–1302 | Cite as

Weak Convergence of the Empirical Spectral Distribution of High-Dimensional Band Sample Covariance Matrices

  • Kamil Jurczak
Article
  • 58 Downloads

Abstract

In this article, we investigate high-dimensional band sample covariance matrices under the regime that the sample size n, the dimension p, and the bandwidth d tend simultaneously to infinity such that
$$\begin{aligned} n/p\rightarrow 0 \ \ \text {and} \ \ d/n\rightarrow y>0. \end{aligned}$$
It is shown that the empirical spectral distribution of those matrices converges weakly to a deterministic probability measure with probability 1. The limiting measure is characterized by its moments. Certain restricted compositions of natural numbers play a crucial role in the evaluation of the expected moments of the empirical spectral distribution.

Keywords

High-dimensional sample covariance matrices Empirical spectral distribution Strong convergence Weak convergence Method of moments Number of restricted compositions of a natural number 

Mathematics Subject Classification (2010)

60B20 

References

  1. 1.
    Abramson, M.: Restricted combinations and compositions. Fibonacci Quart. 14, 439–452 (1976)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bai, Z., Silverstein, J.: Spectral Analysis of Large Dimensional Random Matrices. Springer, New York (2010)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bai, Z.D., Yin, Y.Q.: Limit of the smallest eigenvalue of a large-dimensional sample covariance matrix. Ann. Prob. 21, 1275–1294 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bai, Z.D., Zhang, L.X.: Semicircle law for Hadamard products. SIAM. J. Matrix Anal. Appl. 29, 473–495 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Benaych-Georges, F., Péché, S.: Largest eigenvalues and eigenvectors of band or sparse matrices. Electron. Commun. Probab. 19, 1–9 (2014a)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Benaych-Georges, F., Péché, S.: Localization and delocalization for heavy tailed band matrices. Ann. Inst. Henri Poincaré Probab. Stat. 50, 1385–1403 (2014b)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bickel, P., Levina, E.: Covariance regularization by thresholding. Ann. Stat. 36, 2577–2604 (2008a)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bickel, P., Levina, E.: Regularized estimation of large covariance matrices. Ann. Stat. 36, 199–227 (2008b)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bogachev, L.V., Molchanov, S.A., Pastur, L.A.: On the density of states of random band matrices. Mat. Zametki. 50, 31–42 (1991)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Cai, T., Jiang, T.: Limiting laws of coherence of random matrices with applications to testing covariance structure and construction of compressed sensing matrices. Ann. Stat. 39, 1496–1525 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cai, T., Zhou, H.: Optimal rates of convergence for sparse covariance matrix estimation. Ann. Stat. 40, 2389–2420 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    El Karoui, N.: Operator norm consistent estimation of large-dimensional sparse covariance matrices. Ann. Stat. 36, 2717–2756 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58, 13–30 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kirsch, W., Khorunzhy, A.: Limit of infinite band width for product of two random matrices. Random Oper. Stoch. Eq. 5, 325–336 (1997)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Lam, C., Fan, J.: Sparsistency and rates of convergence in large covariance matrix estimation. Ann. Stat. 37, 4254–4278 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Levina, E., Vershynin, R.: Partial estimation of covariance matrices. Prob. Theory Relat. Fields 153, 405–419 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Li, C.K., Mathias, R.: The Lidskii–Mirsky–Wielandt theorem—additive and multiplicative versions. Numer. Math. 81, 377–413 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Qiu, Y., Chen, S.: Test for bandedness of high-dimensional covariance matrices and bandwidth estimation. Ann. Stat. 40, 1285–1314 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Sodin, S.: The spectral edge of some random band matrices. Ann. Math. 172, 2223–2251 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Fakultät für MathematikRuhr-Universität BochumBochumGermany

Personalised recommendations