Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Affine Transformations in Bundles

  • 2 Accesses

Abstract

This paper is a review of results of studies of affine transformations in generalized spaces over real linear algebras over the past 15-20 years.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. V. Aminova, “Projectively-group properties of some Riemannian spaces,” Tr. Geom. Semin. VINITI, 6, 295–316 (1974).

  2. 2.

    A. V. Aminova, “Groups of projective and affine motions in spaces of general relativity theory,” Tr. Geom. Semin. VINITI, 6, 317–346 (1974).

  3. 3.

    A. V. Aminova, “Groups of almost projective motions of spaces of affine connection,” Izv. Vyssh. Ucheb. Zaved. Mat., 4, 71–75 (1979).

  4. 4.

    A. V. Aminova, “Pseudo-Riemannian manifolds with common geodesics,” Usp. Mat. Nauk, 48, No. 2 (290), 107–164 (1993).

  5. 5.

    A. V. Aminova and N. A.-M. Aminov, “Cartan projective connection spaces and group-theoretic analysis of systems of second-order ordinary differential equations,” J. Math. Sci., 169, No. 3, 282–296 (2010).

  6. 6.

    G. Atanasiu and M. Purcaru, “About a class of metrical N-linear connections on the 2-tangent bundle,” FILOMAT, 21, No. 1, 113–128 (2007).

  7. 7.

    G. Atanasiu, “N-Linear connections and JN-linear connections on second-order tangent bundle T2,” Acta Univ. Apulensis Math. Inform., 11, 35–38 (2006).

  8. 8.

    N. E. Belova, “Bundles of biaxial spaces generated by the algebra of antiquaternions,” in: Motions in Generalized Space [in Russian], Penza (2000), pp. 17–30.

  9. 9.

    K. M. Budanov and A. V. Voevodin, “On Frobenius Weil algebras of width 2,” Differ. Geom. Mnogoobr. Figur, 37, 19–23 (2006).

  10. 10.

    K. M. Budanov, “Lifts of functions and vector fields to the Weil bundle over the tensor product of algebras of dual numbers,” Tr. Geom. Semin. G. F. Lapteva, 16–20 (2007).

  11. 11.

    G. N. Bushueva, “Weil bundles over manifolds depending on parameters,” in: Motions in Generalized Spaces [in Russian], Penza (2002), pp. 24–33.

  12. 12.

    G. N. Bushueva, amd V. V. Shurygin, “On the higher order geometry ofWeil bundles over smooth manifolds and over parameter depended manifolds,” Lobachevskii J. Math., 18, 53–105 (2005).

  13. 13.

    J. Dȩbecki, “Linear liftings of symmetric tensor fields of type (1, 2) toWeil bundles,” Ann. Polon. Math., 92, No. 1, 13–27 (2007).

  14. 14.

    J. Dȩbecki, “Linear natural liftings of forms to Weil bundles with Weil algebras \( {D}_k^r \),” Note Mat., 28, No. 2, 99–105 (2008).

  15. 15.

    J. Dȩbecki, “Affine liftings of torsion-free connections to Weil bundles,” Colloq. Math., 114, No. 1, 1–8 (2009).

  16. 16.

    J. Dȩbecki, “Linear liftings of skew symmetric tensor fields of type (1, 2) to Weil bundles,” Czech. Math. J., 60 (135), No. 4, 933–943 (2010).

  17. 17.

    A. I. Egorov, “Maximally mobile generalized differential-geometric spaces, I,” in: Motions in Generalized Spaces [in Russian], Penza (2000), pp. 91–100.

  18. 18.

    A. I. Egorov, “Riemannian spaces Vn(x) of Professor I. P. Egorov with a motion group Gr of order \( r=\frac{\left(n-1\right)\left(n-2\right)}{2}+5\left(n\ge 4\right)// \) in: Motions in Generalized Spaces [in Russian], Penza (2002), pp. 52–61.

  19. 19.

    A. I. Egorov, “Motions in generalized Riemannian and Finslerial spaces, III,” in: Motions in Generalized Spaces [in Russian], Penza (2002), pp. 62–71.

  20. 20.

    A. I. Egorov, “Finslerian spaces with indefinite metric and a motion group Gr of order \( r=\frac{\left(n-1\right)\left(n-2\right)}{2}+5\left(n\ge 4\right). \) II// in: Motions in Generalized Spaces [in Russian], Penza (2002), pp. 72–74.

  21. 21.

    A. I. Egorov, “Local surfaces of revolution in the space as metric spaces of vector elements, I,” Tr. Geom. Semin. G. F. Lapteva, 45–50 (2004).

  22. 22.

    A. I. Egorov, N. S. Sinyukov, and A. Ya. Sultanov, “The scientific heritage of I. P. Egorov (July 25, 1915—October 2, 1990),” in: Itogi Nauki Tekh. Sovr. Mat. Prilozh. Temat. Obzory, 8, VINITI, Moscow (1995), pp. 5–36.

  23. 23.

    I. P. Egorov, “On the order of motion groups of spaces of affine connection,” Dokl. Akad. Nauk SSSR, 61, No. 4, 605–608 (1948).

  24. 24.

    I. P. Egorov, Motions in spaces of affine connection [in Russian], Thesis, Moscow State Univ. (1955).

  25. 25.

    I. P. Egorov, “Motions in generalized differential-geometric spaces,” in: Itogi Nauki Tekh. Algebra. Topol. Geom. 1965, VINITI, Moscow (1967), pp. 375–428.

  26. 26.

    I. P. Egorov, “Automorphisms in generalized spaces,” Itogi Nauki Tekh. Probl. Geom., 10, 147–191 (1978).

  27. 27.

    I. P. Egorov, Geometry [in Russian], Moscow (1979).

  28. 28.

    I. P. Egorov, “Motions and homotheties in Finsler spaces and their generalizations,” Itogi Nauki Tekh. Probl. Geom., 16, 81–126 (1984).

  29. 29.

    L. E. Evtushik, Yu. G. Lumiste, N. M. Ostianu, and A. P. Shirokov, “Differential-geometric structures on manifolds,” Itogi Nauki Tekh. Probl. Geom., 9, VINITI, Moscow (1979).

  30. 30.

    F. R. Gainullin and V. V. Shurygin, “Holomorphic tensor fields and linear connections on the second-order tangent bundles,” Uch. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki, 151, No. 4, 36–50 (2009).

  31. 31.

    A. Gezer, K. Akbulut, and A. A. Salimov, “Infinitesimal holomorphically projective transformations on tangent bundles with respect to the synectic metric tensor,” J. Geom. Topol., 9, No. 3, 225–237 (2009).

  32. 32.

    A. Gezer and M. Altunbas, “Some results on a cross-section in the tensor bundle,” Hacet. J. Math. Stat., 43, No. 3, 391–397 (2014).

  33. 33.

    A. Gezer and M. Altunbas, “On the (1, 1)-tensor bundle with Cheeger–Gromoll-type metric,” Proc. Indian Acad. Sci. Math. Sci., 125, No. 4, 569–576 (2015).

  34. 34.

    A. Gezer and A. A. Salimov, “Diagonal lifts of tensor fields of type (1, 1) on cross-sections in tensor bundles and its applications,” J. Korean Math. Soc., 45, No. 2, 367–376 (2008).

  35. 35.

    A. Gezer and A. A. Salimov, “Almost complex structures on tensor bundles,” Arab. J. Sci. Eng. Sec. A Sci., 33, No. 2, 283–296 (2008).

  36. 36.

    A. Gezer and A. A. Salimov, “Lifts of (1, 1)-tensor fields on pure cross-sections of (p, q)-tensor bundles,” J. Pure Appl. Math., 2, No. 2, 194–202 (2011).

  37. 37.

    L. S. Gorshkova, “Infinitesimal conformal transformations in Davis spaces,” in: Motions in Generalized Spaces [in Russian], Penza (2000), pp. 13–16.

  38. 38.

    L. S. Gorshkova, “On infinitesimal conformal transformations in metric spaces of vector and covector densities,” in: Motions in Generalized Spaces [in Russian], Penza (2002), pp. 34–37.

  39. 39.

    L. S. Gorshkova, “On certain classes of metric spaces of vector densities that admit conformal transformations,” Tr. Geom. Semin. G. F. Lapteva, 31–33 (2004).

  40. 40.

    Sh. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, Interscience, New York–London (1963).

  41. 41.

    I. Kolář, “Affine structures on Weil bundles,” Nagoya Math. J., 158, 99–106 (2000).

  42. 42.

    I. Kolář, “Weil bundles as generalized jet spaces,” in: Handbook of Global Analysis, Elsevier, Amsterdam (2008), pp. 625–664.

  43. 43.

    I. Kolář, “On the natural transformations of Weil bundles,” Arch. Math. (Brno), 49, No. 5, 303–308 (2013).

  44. 44.

    I. Kolář, “On the geometry of Weil bundles,” Differ. Geom. Appl., 35, suppl., 136–142 (2014).

  45. 45.

    I. Kolář, “On the geometry of vertical Weil bundles,” Arch. Math. (Brno), 50, No. 5, 317–322 (2014).

  46. 46.

    I. M. Krestinina, “Extensions of tensor fields and linear connections from the base Mn to the bundle of affinors E(Mn),” in: Motions in Generalized Spaces [in Russian], Penza (1999), pp. 50–60.

  47. 47.

    I.M. Krestinina, “Canonical decomposition of an infinitesimal affine transformation of the bundle of affinors with the connection of horizontal lift,” in: Motions in Generalized Spaces [in Russian], Penza (1999), pp. 61–64.

  48. 48.

    I. M. Krestinina, “On the decomposition of an infinitesimal projective transformation of the bundle of affinors with the connection adjoint to the connection of horizontal lift,” in: Motions in Generalized Spaces [in Russian], Penza (2000), pp. 168–172.

  49. 49.

    B. L. Laptev, “Covariant differential and the theory of differential invariants in the space of tensor supporting elements,” Uch. Zap. Kazan. Univ., 118, No. 4, 75–147 (1958).

  50. 50.

    A. Magden and A. A. Salimov, “Horizontal lifts of tensor fields to sections of tensor bundles,” Izv. Vyssh. Ucheb. Zaved. Mat., 3, 77–80 (2001).

  51. 51.

    N. I. Manina, “On horizontal lifts of vector fields to the secondd-order tangent bundle,” in: Motions in Generalized Spaces [in Russian], Penza (2005), pp. 65–70.

  52. 52.

    N. I. Manina, “On the decomposition of an infinitesimal affine transformation of the second-order tangent bundle,” Izv. Penz. Gos. Pedagog. Inst., 22, 58–63 (2010).

  53. 53.

    N. I. Manina, “Infinitesimal affine transformations of the second-order tangent bundle with the connection of horizontal lift over a non-projectively flat space,” in: Proc. VII Int. Symp. “Fundamental and Applied Scientific Problems” [in Russian], Moscow (2012), pp. 23–31.

  54. 54.

    N. I. Manina and A. Ya. Sultanov, “Infinitesimal affine transformations of the second-order tangent bundle with the connection of horizontal lift,” Izv. Vyssh. Ucheb. Zaved. Mat., 9, 62–69 (2011).

  55. 55.

    R. Miron and G. Atanasiu, “Differential geometry of the k-osculator bundle,” Rev. Roum. Math. Pures Appl., 41, Nos. 3-4, 205–236 (1996).

  56. 56.

    Mok Kam-Ping, “Lifts of vector fields to tensor bundles,” Geom. Dedic., 8, No. 1, 61–67 (1979).

  57. 57.

    O. A. Monakhova, “Vertical lifts of tensor fields of the type (1, 1),” in: Motions in Generalized Spaces [in Russian], Penza (2000), pp. 173–177.

  58. 58.

    O. A. Monakhova, “Horizontal lift of a connection to the bundle of twice covariant tensors,” in: Motions in Generalized Spaces [in Russian], Penza (2002), pp. 168–172.

  59. 59.

    O. A. Monakhova, “On adapted frames and some lifts in the bundle of twice covariant tensors,” Differ. Geom. Mnogoobr. Figur, 33, 72–74 (2002).

  60. 60.

    O. A. Monakhova, “On some properties of the horizontal lift of a connection on the bundle of twice covariant tensors,” Differ. Geom. Mnogoobr. Figur, 34, 95–98 (2003).

  61. 61.

    O. A. Monakhova, “Natural extension of diffeomorphisms of the base to the bundle of twice covariant tensors,” Tr. Geom. Semin. G. F. Lapteva, 80–83 (2004).

  62. 62.

    O. A. Monakhova, “Recurrence condition for the curvature tensor of the horizontal lift of a connection on the bundle of twice covariant tensor,” in: Motions in Generalized Spaces [in Russian], Penza (2005), pp. 78–84.

  63. 63.

    O. A. Monakhova, “Horizontal lift of a linear connection to the bundle of twice covariant tensors,” Differ. Geom. Mnogoobr. Figur, 36, 88–92 (2005).

  64. 64.

    O. A. Monakhova, “Infinitesimal affine transformation of the space (\( {T}_2^0 \) (Mn),H) over themaximally mobile non-projectively flat space (Mn,∇),” Uch. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki, 147, 132–137 (2005).

  65. 65.

    O. A. Monakhova, “Decomposition of an infinitesimal affine transformation of the bundle (\( {T}_2^0 \) (Mn),H),” Differ. Geom. Mnogoobr. Figur, 37, 108–112 (2006).

  66. 66.

    O. A. Monakhova, “On the dimension of the Lie algebra of infinitesimal affine transformations of the space (\( {T}_2^0 \) (Mn),H),” Tr. Geom. Semin. G. F. Lapteva, 68–73 (2007).

  67. 67.

    O. A. Monakhova, “Structure group on the bundle of twice covariant tensors,” Izv. Penz. Gos. Pedagog. Inst., 22, 64–66 (2010).

  68. 68.

    O. A. Monakhova, “On the structure group on the bundle of twice covariant tensors,” Differ. Geom. Mnogoobr. Figur, 41, 98–102 (2010).

  69. 69.

    M. V. Morgun, “Some properties of the direct product of linear connections,” in: Motions in Generalized Spaces [in Russian], Penza (2005), pp. 84–90.

  70. 70.

    M. V. Morgun, “On dimensions of Lie algebras of infinitesimal affine transformations of the direct product of affinely connected spaces,” Differ. Geom. Mnogoobr. Figur, 37, 113–118 (2006).

  71. 71.

    M. V. Morgun, “On Lie algebras of affine vector fields on the direct product of projectively- Euclidean and flat affinely connected spaces,” Tr. Geom. Semin. G. F. Lapteva, 74–79 (2007).

  72. 72.

    M. V. Morgun, “On the direct product of nonflat projectively-Euclidean affinely connected spaces,” Differ. Geom. Mnogoobr. Figur, 38, 103–106 (2007).

  73. 73.

    A. Morimoto, “Prolongation of connections to tangent bundles of near points,” J. Differ. Geom., 11, No. 4, 479–498 (1976).

  74. 74.

    N. D. Nikitin, “Infinitesimal motions in spaces of nonlinear connection,” in: Motions in Generalized Spaces [in Russian], Penza (1999), pp. 93–101.

  75. 75.

    N. D. Nikitin, “Infinitesimal projectable transformations of the tangent bundle with an affine connection,” in: Motions in Generalized Spaces [in Russian], Penza (2000), pp. 101–105.

  76. 76.

    N. D. Nikitin, “On the Lie algebra of the transformation group with one-dimensional orbits,” Tr. Geom. Semin. G. F. Lapteva, 87–90 (2004).

  77. 77.

    Ya. V. Nikitina and A. Ya. Sultanov, “Weil bundle over the tensor product of two algebras of dual numbers,” Izv. Vyssh. Ucheb. Zaved. Povolzh. Region. Fiz.-Mat. Nauki, 4 (28), 17–28 (2013).

  78. 78.

    N. A. Opokina, “Tangent and tensor bundles of the type (2, 0) over a Lie group,” Uch. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki, 147, No. 1, 138–147 (2005).

  79. 79.

    N. A. Opokina, “Left connection on the tensor bundle of the type (2, 0) over a Lie group,” Izv. Vyssh. Ucheb. Zaved. Mat., 11, 77–82 (2006).

  80. 80.

    N. A. Opokina, “Left-invariant metrics on the tensor bundle of the type (2, 0) over a Lie group,” Uch. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki, 154, No. 4, 146–155 (2012).

  81. 81.

    N. A. Os’minina, “On the algebra of infinitesimal affine transformations of the second-order tangent bundle with the connection of total lift,” in: Motions in Generalized Spaces [in Russian], Penza (1999), pp. 102–106.

  82. 82.

    N. A. Os’minina, “On some lifts of the second-order tangent bundle,” in: Motions in Generalized Spaces [in Russian], Penza (1999), pp. 107–120.

  83. 83.

    N. A. Os’minina, “On the canonical decomposition of an arbitrary infinitesimal projective transformation of the second-order tangent bundle with the connection of total lift,” in: Motions in Generalized Spaces [in Russian], Penza (2000), pp. 179–181.

  84. 84.

    N. A. Os’minina, “Infinitesimal affine transformation of the second-order tangent bundle T2(Mn) with the synectic connection ∇* (H1,H2) over the projectively-Euclidean space,” in: Motions in Generalized Spaces [in Russian], Penza (2002), pp. 173–176.

  85. 85.

    N. A. Os’minina, “On the canonical decomposition of an arbitrary infinitesimal affine transformation of the second-order tangent bundle T2(Mn) with a synectic connection ∇*(∇,H1,H2),” in: Motions in Generalized Spaces [in Russian], Penza (2002), pp. 176–180.

  86. 86.

    N. A. Os’minina, “Infinitesimal affine transformations of the second-order tangent bundle (T2(Mn) with a synectic connection ∇* over a maximally mobile space,” in: Motions in Generalized Spaces [in Russian], Penza (2002), pp. 181–182.

  87. 87.

    N. A. Os’minina, “Infinitesimal transformation of the second-order tangent bundle T2(Mn) with the connection of the total lift ∇C over the projectively-Euclidean space,” in: Motions in Generalized Spaces [in Russian], Penza (2005), pp. 101–105.

  88. 88.

    A. A. Salimov, “Holomorphic-projective transformations of connection on manifolds with structures determined by algebras,” Tr. Geom. Semin. Kazan. Univ., 16, 91–103 (1984).

  89. 89.

    A. A. Salimov, “A new method in the theory of lifts of tensor fields to tensor bundles,” Izv. Vyssh. Ucheb. Zaved. Mat., 3, 69–75 (1994).

  90. 90.

    A. A. Salimov and N. Chengiz, “Lifts of Riemannian metrics to tensor bundles,” Izv. Vyssh. Ucheb. Zaved. Mat., 11, 51–59 (2003).

  91. 91.

    A. A. Salimov and A. Gezer, “On the geometry of the (1, 1)-tensor bundle with Sasaki-type metric,” Chin. Ann. Math. Ser. B, 32, No. 3, 369–386 (2011).

  92. 92.

    A. A. Salimov, A. Gezer, and K. Akbulut, “Geodesics of Sasakian metrics on tensor bundles,” Mediterr. J. Math., 6, No. 2, 135–147 (2009).

  93. 93.

    A. A. Salimov, A. Gezer, and S. Aslanc, “On almost complex structures in the cotangent bundle,” Turk. J. Math., 35, No. 3, 487–492 (2011).

  94. 94.

    A. A. Salimov, A. Gezer, and M. Iscan, “On para-Kaehler–Norden structures on the tangent bundles,” Ann. Pol. Math., 103, No. 3, 247–261 (2012).

  95. 95.

    B. N. Shapukov, “Structure of tensor bundles,” Izv. Vyssh. Ucheb. Zaved. Mat., 5, 63–73 (1979).

  96. 96.

    B. N. Shapukov, “Connections of differentiable bundles,” Tr. Geom. Semin. Kazan. Univ., 12, 97–111 (1980).

  97. 97.

    B. N. Shapukov, “Structure of tensor bundles, II,” Izv. Vyssh. Ucheb. Zaved. Mat., 9, 56–63 (1981).

  98. 98.

    B. N. Shapukov, “Connections on differentiable bundles,” in: Itogi Nauki Tekh. Probl. Geom., 15, VINITI, Moscow (1983), pp. 61–93.

  99. 99.

    B. N. Shapukov, Structures on Fibered Manifolds and Problems of Reduction [in Russian], Thesis, Kazan (1990).

  100. 100.

    B. N. Shapukov, “Lie derivative on fibered manifolds,” in: Itogi Nauki Tekh. Sovr. Mat. Prilozh. Temat. Obzory, 73, VINITI, Moscow (2002), pp. 103–134.

  101. 101.

    A. P. Shirokov, “Structures on differentiable manifolds,” in: Itogi Nauki. Algebra. Topol. Geom. 1967, VINITI, Moscow (1969), pp. 127–188.

  102. 102.

    A. P. Shirokov, “Structures on differentiable manifolds,” in: Itogi Nauki. Algebra. Topol. Geom., 11, VINITI, Moscow (1974), pp. 153–208.

  103. 103.

    A. P. Shirokov, “Remark on structures in tangent bundles,” Tr. Geom. Semin. VINITI, 5, (1974), pp. 311–318.

  104. 104.

    A. P. Shirokov, “Geometry of tangent bundles and spaces over algebras,” in: Itogi Nauki Tekh. Probl. Geom., 12, VINITI, Moscow (1981), pp. 61–96.

  105. 105.

    V. V. Shurygin, “Jet bundles as manifolds over algebras,” in: Itogi Nauki Tekh. Probl. Geom., 19, VINITI. Moscow (1987), pp. 3–22.

  106. 106.

    V. V. Shurygin, “Smooth manifolds over local algebras and Weil manifolds,” in: Itogi Nauki Tekh. Sovr. Mat. Prilozh. Temat. Obzory, 73, VINITI, Moscow (2002), pp. 162–236.

  107. 107.

    V. V. Shurygin, “Some aspects of the theory of manifolds over algebras and Weil bundles,” J. Math. Sci., 169, No. 3, 315–341 (2010).

  108. 108.

    V. V. Shurygin, Jr., “Lifts of Poisson–Nijenhuis structures to Weil bundles,” Uch. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki, 151, No. 4, 203–214 (2009).

  109. 109.

    E. P. Shustova, “Total lifts of a connection and a metric to the tangent bundle of order k,” in: Motions in Generalized Spaces [in Russian], Penza (2002), pp. 228–233.

  110. 110.

    L. B. Smolyakova, “On holonomy representations of manifolds modelled by modules over Weil algebras,” Tr. Geom. Semin. Kazan. Univ., 24, 129–138 (2003).

  111. 111.

    L. B. Smolyakova, “Structure of complete rediant manifolds modelled by modules over Weil algebras,” Izv. Vyssh. Ucheb. Zaved. Mat., 5, 76–83 (2004).

  112. 112.

    A. Ya. Sultanov, “On lifts of tensor fields from a manifold to the bundle of linear frames,” in: Motions in Generalized Spaces [in Russian], Penza (1988), pp. 53–60.

  113. 113.

    A. Ya. Sultanov, “Some lifts in the bundle of linear frames,” in: Motions in Generalized Spaces [in Russian], Penza (1991), pp. 150–157.

  114. 114.

    A. Ya. Sultanov, “Bundle of linear frames over almost complex manifolds,” Geometry of Generalized Spaces [in Russian], Penza (1992), pp. 101–105.

  115. 115.

    A. Ya. Sultanov, “Infinitesimal projective transformations of bundles of linear frames with the connection of total lift,” in: Proc. Int. Conf. “N. I. Lobachevsky and Modern Geometry” [in Russian], Kazan (1992), pp. 96–97.

  116. 116.

    A. Ya. Sultanov, “Extensions of Riemannian metrics from a differentiable manifold to its bundle of linear frames,” Izv. Vyssh. Ucheb. Zaved. Mat., 6, 93–102 (1992).

  117. 117.

    A. Ya. Sultanov, “On Abelian subgroups of the affine group,” in: Proc. Int. Conf. on Algebra in the Memory of M. I. Kargapolov [in Russian], Krasnoyarsk (1993), pp. 323–324.

  118. 118.

    A. Ya. Sultanov, “Infinitesimal transformations of the bundle of linear frames with the connection of total lift,” Tr. Geom. Semin. Kazan. Univ., 22, 78–88 (1994).

  119. 119.

    A. Ya. Sultanov, “On some geometric structures in bundles of jets of differentiable mappings,” Izv. Vyssh. Ucheb. Zaved. Mat., 7, 51–64 (1995).

  120. 120.

    A. Ya. Sultanov, “Infinitesimal transformations of the bundle of linear frames with the connection of total lift,” Izv. Vyssh. Ucheb. Zaved. Mat., 2, 53–58 (1996).

  121. 121.

    A. Ya. Sultanov, “Decomposition of the bundle of jets of differentiable mappings into the Whitney sum of tangent bundles,” Tr. Geom. Semin. Kazan. Univ., 23, 139–148 (1997).

  122. 122.

    A. Ya. Sultanov, “Extensions of tensor fields and connections in Weil bundles,” Izv. Vyssh. Ucheb. Zaved. Mat., 9, 64–72 (1999).

  123. 123.

    A. Ya. Sultanov, “On linear connections in Weil bundles,” in: Proc. Int. Conf. “Invariant Methods of Analysis on Manifolds for Structures of Geometry and Mathematical Physics” Dedicated to the 90th Anniversary of Professor G. F. Laptev [in Russian], Moscow (1999), pp. 48–60.

  124. 124.

    A. Ya. Sultanov, “On the maximal dimension of groups of affine transformations of Weil bundles with synectic connections,” in: Proc. Conf. “Theory of Functions, Its Applications, and Related Topics” Dedicated to the 130th Anniversary of Professor D. F. Egorov [in Russian], Kazan (1999), pp. 215–216.

  125. 125.

    A. Ya. Sultanov, “Infinitesimal affine transformations in first-order Weil bundles with the connection of horizontal lift,” in: Motions in Generalized Spaces [in Russian], Penza (1999), pp. 142–149.

  126. 126.

    A. Ya. Sultanov, “On linear connections over algebras,” in: Proc. Int. Conf. on Geometry and Analysis Dedicated to the Memory of Professor N. V. Efimov, Abrau-Dyurso, Sept. 5–11, 2000 [in Russian], Rostov-on-Don (2000), p. 68.

  127. 127.

    A. Ya. Sultanov, “On the maximal dimensions of intransitive motion groups of affinely connected spaces,” in: Motions in Generalized Spaces [in Russian], Penza (2000), pp. 79–80.

  128. 128.

    A. Ya. Sultanov, “On the decomposition of infinitesimal affine transformations of Whitney sums of tangent bundles,” in: Actual Problems im Mathematics and Mechanics. Proc. N. I. Lobachevsky Math. Center [in Russian], 5, Kazan (2000), pp. 200–201.

  129. 129.

    A. Ya. Sultanov, “On intransitive motion groups of affinely connected spaces,” Differ. Geom. Mnogoobr. Figur, 32, 101–104 (2001).

  130. 130.

    A. Ya. Sultanov, “On affine transformations of Weil bundles with synectic connections,” in: Proc. 4 Int. Conf. on Geometry and Topology [in Russian], Cherkassy (2001), pp. 99–100.

  131. 131.

    A. Ya. Sultanov, “Differentiations in linear algebras of special type,” in: Motions in Generalized Spaces [in Russian], Penza (2002), pp. 206–215.

  132. 132.

    A. Ya. Sultanov, “On motion groups of affinely connected spaces with torsion,” Differ. Geom. Mnogoobr. Figur, 33, 100–103 (2002).

  133. 133.

    A. Ya. Sultanov, “Affine transformations of manifolds with linear connection and automorphisms of linear algebras,” Izv. Vyssh. Ucheb. Zaved. Mat., 11, 77–81 (2003).

  134. 134.

    A. Ya. Sultanov, “On infinitesimal automorphisms of bundle,” in: Proc. 5 Int. Conf. on Geometry and Topolgy Dedicated to the Memory of Academician A. V. Pogorelov [in Russian], Cherkassy (2003), pp. 137–138.

  135. 135.

    A. Ya. Sultanov, “On the dimension of the algebra of differentiations of a unital linear algebra,” in: Proc. Int. Conf. On Geometry and Analysis [in Russian], Penza (2003), pp. 110–112.

  136. 136.

    A. Ya. Sultanov, “On the Whitney sum of Weil bundles,” in: Proc. Int. Conf. on Geometry and Analysis Dedicated to the Memory of Professor N. V. Efimov, Abrau-Dyurso, Sept. 5–11, 2004 [in Russian], Rostov-on-Don (2004), p. 57.

  137. 137.

    A. Ya. Sultanov, “On differentiations of free Weil algebras and their representations on Weil bundles,” Tr. Geom. Semin. G. F. Lapteva, 128–137 (2004).

  138. 138.

    A. Ya. Sultanov, “Actions of automorphism groups of Weil algebras on Weil bundles,” Uch. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki, 147, No. 1, 159–172 (2005).

  139. 139.

    A. Ya. Sultanov, “Horizontal lifts of linear connections on second-order Weil bundles,” Differ. Geom. Mnogoobr. Figur, 36, 133–140 (2005).

  140. 140.

    A. Ya. Sultanov, “On differentiations of linear algebras,” in: Motions in Generalized Spaces [in Russian], Penza (2005), pp. 111–136.

  141. 141.

    A. Ya. Sultanov, “Holomorphic affine vector fields on Weil bundles,” Proc. Int. Conf. on Geometry and Analysis Dedicated to the Memory of Professor N. V. Efimov, Abrau-Dyurso, Sept. 5–11, 2006, Rostov-on-Don (2006), p. 90.

  142. 142.

    A. Ya. Sultanov, “On dimensions of Lie algebras of holomorphic affine vector fields in affinely connected spaces over algebras,” Differ. Geom. Mnogoobr. Figur, 37, 164–168 (2006).

  143. 143.

    A. Ya. Sultanov, “On the Lie algebra of holomorphic affine vector fields on Weil bundles with connections of natural lifts,” in: Proc. Int. Conf. “Geometry on Odessa–2006” [in Russian], Odessa (2006), p. 152.

  144. 144.

    A. Ya. Sultanov, “On Weil algebras,” in: Proc. Int. Conf. “Modern Problems in Geometry and Mechanics of Deformable Bodies” [in Russian], Cheboksary (2006), pp. 38–39.

  145. 145.

    A. Ya. Sultanov, “On Weil algebras with additional conditions,” Vestn. Chuvash. Pedagog. Inst., 5, 172–174 (2006).

  146. 146.

    A. Ya. Sultanov, “On real dimensions of Lie algebras of holomorphic affine vector fields,” Izv. Vyssh. Ucheb. Zaved. Mat., 4, 54–67 (2007).

  147. 147.

    A. Ya. Sultanov, “On the real realization of a holomorphic linear connection over an algebra,” Differ. Geom. Mnogoobr. Figur, 38, 136–139 (2007).

  148. 148.

    A. Ya. Sultanov and A. Yu. Moshin, “On the Whitney sum of Weil bundles,” Tr. Inst. Sistem. Anal. Ross. Akad. Nauk, 31 (1), 215–223 (2007).

  149. 149.

    A. Ya. Sultanov and A. V. Mukhin, “Decomposition of Weil bundles into Whitney sums,” Tr. Inst. Sistem. Anal. Ross. Akad. Nauk, 31 (1), 224–229 (2007).

  150. 150.

    A. Ya. Sultanov, “Linear connections in the module of differentiations of an algebra,” Tr. Geom. Semin. G. F. Lapteva, 78–109 (2007).

  151. 151.

    A. Ya. Sultanov, “On Lie algebras of holomorphic affine vector fields on Weil bundles,” Uch. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki, 151, No. 4, 171–177 (2009).

  152. 152.

    A. Ya. Sultanov, “Derivations of linear algebras and linear connections,” J. Math. Sci., 169, No. 3, 362–412 (2010).

  153. 153.

    A. Ya. Sultanov, “On automorphism groups of special linear algebras,” Izv. Penz. Gos. Pedagog. Inst., 18 (22), 70–74 (2010).

  154. 154.

    A. Ya. Sultanov, “On algebras of differentiations of linear algebras of maximal dimension,” Izv. Penz. Gos. Pedagog. Inst., 18 (22), 75–77 (2010).

  155. 155.

    A. Ya. Sultanov, “On Lie algebras of holomorphic affine vector fields and holomorphic linear connections with symmetric Ricci fields,” Vestn. Tatar. Gos. Guman.-Pedagog. Inst., 1 (23), 41–45 (2011).

  156. 156.

    A. Ya. Sultanov, “On affine differentiations in the module of differentiations of the algebra of polynomials,” in: Proc. VII Int. Symp. “Fundamental and Applied Scientific Problems” [in Russian], Vol. 1, Moscow (2012), pp. 16–22.

  157. 157.

    A. Ya. Sultanov, “Holomorphic affine vector fields on Weil bundles,” Mat. Zametki, 91, No. 6, 896–899 (2012).

  158. 158.

    A. Ya. Sultanov and M. V. Morgun, “On Lie algebras of vector fields of real realizations of holomorphic linear connection,” Izv. Vyssh. Ucheb. Zaved. Mat., 4, 59–65 (2008).

  159. 159.

    A. Ya. Sultanov and G. A. Sultanova, “Estimate of dimensions of Lie algebras of infinitesimal affine transformations of the tangent bundles T(M) with connections of total lift,” Uch. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki, 156, No. 2, 43–54 (2014).

  160. 160.

    A. Ya. Sultanov and N. S. Sultanova, “On affine automorphisms of locally trivial bundles,” Differ. Geom. Mnogoobr. Figur, 34, 136–140 (2003).

  161. 161.

    A. Ya. Sultanov and N. S. Sultanova, “Automorphism groups of Weil algebras and their actions on Weil bundles,” Actual Problems im Mathematics and Mechanics. Proc. N. I. Lobachevsky Math. Center [in Russian], 25, Kazan (2004), pp. 252–253.

  162. 162.

    G. A. Sultanova, “Some lifts of tensor fields of the type (1, r) from the base to the tangent bundle,” Izv. Vyssh. Ucheb. Zaved. Povolzh. Region. Fiz.-Mat. Nauki, 1 (29), 54–64 (2014).

  163. 163.

    G. A. Sultanova, “On motion groups in tangent bundles with connections of total lifts over two-dimensional maximally mobile affinely connected spaces,” Differ. Geom. Mnogoobr. Figur, 46, 153–161 (2015).

  164. 164.

    G. A. Sultanova, “On the estimate of dimensions of Lie algebras of infinitesimal automorphisms of tangent bundles with connections of total lifts over non-projectively-Euclidean bases,” Differ. Geom. Mnogoobr. Figur, 47, 146–153 (2016).

  165. 165.

    G. A. Sultanova, “On dimensions of Lie algebras of automorphisms in tangent bundles with connections of total lifts over projectively-Euclidean bases,” Dalnevost. Mat. Zh., 16, No. 1, 83–95 (2016).

  166. 166.

    N. S. Sultanova, “Infinitesimal affine transformations of cotangent bundles with connections of horizontal lifts,” in: Motions in Generalized Spaces [in Russian], Penza (1999), pp. 150–156.

  167. 167.

    N. S. Sultanova, “On affine transformations of cotangent bundles over maximally mobile affinely connected spaces,” in: Motions in Generalized Spaces [in Russian], Penza (2000), pp. 162–167.

  168. 168.

    N. S. Sultanova, “Natural extensions of diffeomorphisms from a smooth manifold to its cotangent bundle,” in: Motions in Generalized Spaces [in Russian], Penza (2002), pp. 215–220.

  169. 169.

    N. S. Sultanova, “On the dimension of the total motion group of the cotangent bundle with the connection of horizontal lift,” Differ. Geom. Mnogoobr. Figur, 33, 104–107 (2002).

  170. 170.

    V. V. Vishnevsky, “Manifolds over plural numbers and semi-tangent structures,” in: Itogi Nauki Tekh. Probl. Geom., 20, VINITI, Moscow (1988), pp. 35–75.

  171. 171.

    V. V. Vishnevsky, “Integrable affine structures and their plural interpretation,” in: Itogi Nauki Tekh. Sovr. Mat. Prilozh. Temat. Obzory, 73, VINITI, Moscow (2002), pp. 5–64.

  172. 172.

    V. V. Vishnevsky, A. P. Shirokov, and V. V. Shurygin, Spaces over Algebras [in Russian], Kazan (1984).

  173. 173.

    K. Yano, Tangent and Cotangent Bundles, Marcel Dekker, New York (1973).

Download references

Author information

Correspondence to A. Ya. Sultanov.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 146, Geometry, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sultanov, A.Y., Monakhova, O.A. Affine Transformations in Bundles. J Math Sci 245, 601–643 (2020). https://doi.org/10.1007/s10958-020-04713-4

Download citation

Keywords and phrases

  • affine transformation
  • generalized space over an algebra
  • smooth manifold
  • connection
  • torsion.

AMS Subject Classification

  • 53B15