## Abstract

In this paper, geometric properties of the six-dimensional sphere with a nearly Kählerian structure are described.

This is a preview of subscription content, log in to check access.

## References

- 1.
A. Abu-Saleem and G. A. Banaru, “On some contact metric structures on hypersurfaces in a Kählerian manifold,”

*Acta Univ. Apulensis*,**31**, 179–189 (2012). - 2.
A. Abu-Saleem and M. B. Banaru, “Two theorems on Kenmotsu hypersurfaces in a

*W*_{3}-manifold,”*Stud. Univ. Babeş–Bolyai. Math.*,**51**, No. 3, 3–11 (2005). - 3.
A. Abu-Saleem and M. B. Banaru, “Some applications of Kirichenko tensors,”

*Anal. Univ. Oradea. Fasc. Mat.*,**17**, No. 2, 201–208 (2010). - 4.
A. Abu-Saleem and M. B. Banaru, “On almost contact metric hypersurfaces of nearly Kählerian 6-sphere,”

*Malaysian J. Math. Sci.*,**8**, No. 1, 35–46 (2014). - 5.
A. Abu-Saleem, A. Shihab, and M. B. Banaru, “On six-dimensional Kählerian and nearly Kählerian submanifolds of the Cayley algebra,”

*Anal. Univ. Oradea. Fasc. Mat.*,**21**, No. 1, 29–39 (2014). - 6.
D. V. Alekseevsky, B. S. Kruglikov, and H. Winther, “Homogeneous almost complex structures in dimension 6 with semi-simple isotropy,”

*Ann. Glob. Anal. Geom.*,**46**, 361–387 (2014). - 7.
V. I. Arnold,

*Mathematical Methods of Classical Mechanics*[in Russian], M.: Nauka, (1989). - 8.
M. B. Banaru,

*Hermitian geometry of six-dimensional submanifolds of the Cayley algebra*[in Russian], Ph.D. thesis, Moscow (1993). - 9.
M. B. Banaru, “Gray–Hervella classes of almost Hermitian structures on six-dimensional submanifolds of the Cayley algebras,”

*Nauch. Tr. Mosk. Ped. Gos. Univ.*, 36–38 (1994). - 10.
M. B. Banaru, “On six-dimensional submanifolds of the Cayley algebra,”

*Differ. Geom. Mnogoobr. Figur*,**31**, 6–8 (2000). - 11.
M. B. Banaru, “Six theorems on six-dimensional Hermitian submanifolds of the Cayley algebra,”

*Izv. Akad. Nauk Resp. Moldova. Ser. Mat.*, No. 3 (34), 3–10 (2000). - 12.
M. B. Banaru, “On six-dimensional Hermitian submanifolds of the Cayley algebra satisfying the

*g*-cosymplectic hypersurfaces axiom,”*Ann. Sofia Univ. St. K. Ohridski*,**94**, 91–96 (2000). - 13.
M. B. Banaru, “Two theorems on cosymplectic hypersurfaces of six-dimensional Hermitian submanifolds of the Cayley algebra,”

*J. Harbin Inst. Technol.*,**8**, No. 1, 38–40 (2001). - 14.
M. B. Banaru, “A new characterization of the Gray–Hervella classes of almost Hermitian manifolds,” in:

*Proc. 8th Int. Conf. on Differential Geometry and Its Aplications*, Opava, Czech Republic (2001), pp. 4. - 15.
M. B. Banaru, “Some theorems on cosymplectic hypersurfaces of six-dimensional Hermitian submanifolds of the Cayley algebra,”

*Mat. Vesnik*,**53**, No. 3-4, 103–110 (2001). - 16.
M. B. Banaru, “A note on six-dimensional

*G*_{2}-submanifolds of the Cayley algebra,”*An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă. Mat.*,**47**, No. 2, 389–396 (2001). - 17.
M. B. Banaru, “On spectra of some tensors of six-dimensional K¨ahlerian submanifolds of the Cayley algebra,”

*Stud. Univ. Babeş–Bolyai. Math.*,**47**, No. 1, 11–17 (2002). - 18.
M. B. Banaru, “Two theorems on cosymplectic hypersurfaces of six-dimensional Hermitian submanifolds of the Cayley algebra,”

*Izv. Vyssh. Ucheb. Zaved. Ser. Mat.*, No. 1 (476), 9–12 (2002). - 19.
M. B. Banaru, “On Hermitian manifolds satisfying the axiom of

*U*-cosymplectic surfaces,”*Fundam. Prikl. Mat.*,**8**, No. 3, 934–937 (2002). - 20.
M. B. Banaru, “Hermitian geometry of six-dimensional submanifolds of the Cayley algebra,”

*Mat. Sb.*,**193**, No. 5, 3–16 (2002). - 21.
M. B. Banaru, “On nearly cosymplectic hypersurfaces in nearly Kählerian manifolds,”

*Stud. Univ. BabeşBolyai. Math.*,**47**, No. 3, 3–11 (2002). - 22.
M. B. Banaru, “On Kenmotsu hypersurfaces in a six-dimensional Hermitian submanifolds of the Cayley algebra,” in:

*Proc. Int. Conf. “Contemporary Geometry and Related Topics,”*Belgrade (2002), p. 5. - 23.
M. B. Banaru, “A note on six-dimensional

*G*_{1}-submanifolds of the octave algebra,”*Taiwan. J. Math.*,**6**, No. 3, 383–388 (2002). - 24.
M. B. Banaru, “Six-dimensional Hermitian submanifolds of the Cayley algebra and

*u*-Sasakian hypersurface axiom,”*Izv. Akad. Nauk Resp. Moldova. Ser. Mat.*, No. 2 (39), 71–76 (2002). - 25.
M. B. Banaru, “On totally umbilical cosymplectic hypersurfaces of six-dimensional Hermitian submanifolds of the Cayley algebra,”

*Acta Univ. Palacki Olomuc. Math.*,**41**, 7–12 (2002). - 26.
M. B. Banaru, “On the type number of six-dimensional planar Hermitian submanifolds of the Cayley algebra,”

*Kyungpook Math. J.*,**43**, No. 1, 27–35 (2003). - 27.
M. B. Banaru, “On cosymplectic hypersurfaces of six-dimensional Kählerian submanifolds of the Cayley algebra,”

*Izv. Vyssh. Ucheb. Zaved. Ser. Mat.*, No. 7 (494), 59–63 (2003). - 28.
M. B. Banaru, “On six-dimensional

*G*_{2}-submanifolds of the Cayley algebra,”*Mat. Zametki*,**74**, No. 3, 323–328 (2003). - 29.
M. B. Banaru, “On Sasakian hypersurfaces of six-dimensional Hermitian submanifolds of the Cayley algebra,”

*Mat. Sb.*,**194**, No. 8, 13–24 (2003). - 30.
M. B. Banaru, “On the type number of cosymplectic hypersurfaces of six-dimensional Hermitian submanifolds of the Cayley algebra,”

*Sib. Mat. Zh.*,**44**, No. 5, 981–991 (2003). - 31.
M. B. Banaru, “On Kenmotsu hypersurfaces of six-dimensional Hermitian submanifolds of the Cayley algebra,”

*Differ. Geom. Mnogoobr. Figur*,**34**, 12–21 (2003). - 32.
M. B. Banaru, “On Kenmotsu hypersurfaces in a six-dimensional Hermitian submanifold of the Cayley algebra,” in:

*Proc. Int. Conf. “Contemporary Geometry and Related Topics,”*Belgrade (2002), pp. 33–40. - 33.
M. B. Banaru, “On the Gray–Hervella classes of AH-structures on six-dimensional submanifolds of the Cayley algebra,”

*Ann. Sofia Univ. St. K. Ohridski*,**95**, 125–131 (2004). - 34.
M. B. Banaru, “On Kirichenko tensors of nearly K¨ahlerian manifolds,”

*J. Sichuan Univ. Sci. Eng.*,**25**, No. 4, 1–5 (2012). - 35.
M. B. Banaru, “On some almost contact metric hypersurfaces of nearly Kählerian manifolds,” in:

*Proc. 20th Conf. on Applied and Industrial Mathematics*, Chişinău (2012), pp. 16–17. - 36.
M. B. Banaru, “The

*U*-Kenmotsu hypersurfaces axiom and six-dimensional Hermitian submanifolds of the Cayley algebra,”*J. Sichuan Univ. Sci. Eng.*,**26**, No. 3, 1–5 (2013). - 37.
M. B. Banaru, “Special Hermitian manifolds and the 1-cosymplectic hypersurfaces axiom,”

*Bull. Austr. Math. Soc.*,**90**, No. 3, 504–509 (2014). - 38.
M. B. Banaru, “Kenmotsu hypersurface axiom for six-dimensional Hermitian submanifolds of the Cayley algebra,”

*Sib. Mat. Zh.*,**55**, No. 2, 261–266 (2014). - 39.
M. B. Banaru, “On almost contact metric 1-hypersurfaces of Kählerian manifolds,”

*Sib. Mat. Zh.*,**55**, No. 4, 719–723 (2014). - 40.
M. B. Banaru, “Almost contact metric hypersurfaces with type number 1 or 0 in nearly Kählerian manifolds,”

*Vestn. Mosk. Univ. Ser.*1*. Mat. Mekh.*,**3**, 60–62 (2014). - 41.
M. B. Banaru, “On almost contact metric hypersurfaces with type number 1 in six-dimensional Kählerian submanifolds of the Cayley algebra,”

*Izv. Vyssh. Ucheb. Zaved. Ser. Mat.*, No. 10, 13–18 (2014). - 42.
M. B. Banaru, “On almost contact metric hypersurfaces of NK-manifolds,” in:

*Proc. II Int. Conf. “Geometric Analysis and Its Applications*, Volgograd (2014), pp. 14–17. - 43.
M. B. Banaru, “Geometry of six-dimensional almost Hermitian submanifolds of the algebra of octaves,”

*Itogi Nauki Tekh. Sovr. Mat. Prilozh. Temat. Obzory*,**126**, 10–61 (2014). - 44.
M. B. Banaru, “

*W*4-manifolds and axiom of cosymplectic hypersurfaces,”*Vestn. Mosk. Univ. Ser.*1*. Mat. Mekh.*,**5**, 34–37 (2015). - 45.
M. B. Banaru, “On almost contact metric 2-hypersurfaces in six-dimensional Kählerian submanifolds of the Cayley algebra,” in:

*Proc. Int. Conf. “Geometry Days in Novosibirsk–2015,”*Novosibirsk (2015), pp. 9–10. - 46.
M. B. Banaru, “On almost contact metric 2-hypersurfaces in Kählerian manifolds,”

*Bull. Transilvania Univ. of Braşov. Ser. III. Math. Inform. Phys.*,**9 (58)**, No. 1, 1–10 (2016). - 47.
M. B. Banaru, “Axiom of Sasakian hypersurfaces and six-dimensional Hermitian submanifolds of the octave algebra,”

*Mat. Zametki*,**99**, No. 1, 140–144 (2016). - 48.
M. B. Banaru and G. A. Banaru, “A note on six-dimensional planar Hermitian submanifolds of the Cayley algebra,”

*Izv. Akad. Nauk Resp. Moldova. Ser. Mat.*, No. 1 (74), 23–32 (2014). - 49.
M. B. Banaru and G. A. Banaru, “On almost contact metric hypersurfaces of the six-dimensional sphere,”

*Sist. Komp. Mat. Prilozh.*,**16**, 126–127 (2015). - 50.
M. B. Banaru and G. A. Banaru, “1-Cosymplectic hypersurfaces axiom and six-dimensional planar Hermitian submanifolds of the octonian,”

*SUT J. Math.*,**51**, No. 1, 1–9 (2015). - 51.
M. B. Banaru and G. A. Banaru, “A note on almost contact metric hypersurfaces of the nearly Kählerian 6-sphere,”

*Bull. Transilvania Univ. Braşov. Ser. III. Math. Inform. Phys.*,**8 (57)**, No. 2, 21–28 (2015). - 52.
M. B. Banaru and V. F. Kirichenko, “Hermitian geometry of six-dimensional submanifolds of the Cayley algebra,”

*Usp. Mat. Nauk*,**49**, No. 1, 205–206 (1994). - 53.
F. Belgun and A. Moroianu, “Nearly Kählerian 6-manifolds with reduced holonomy,”

*Ann. Global Anal. Geom.*,**19**, 307–319 (2001). - 54.
D. E. Blair, “Contact manifolds in Riemannian geometry,”

*Lect. Notes Math.*,**509**, 1–145 (1976). - 55.
D. E. Blair,

*Riemannian Geometry of Contact and Symplectic Manifolds*, Progr. Math., Birkhäuser, Boston–Basel–Berlin (2002). - 56.
J. Bolton, F. Dillen, B. Dioos, and L. Vrancken, “Almost complex surfaces in the nearly Kählerian

*S*^{3}*× S*^{3},”*Tôhoku Math. J.*,**67**, 1–17 (2015). - 57.
R. Brown and A. Gray, “Vector cross products,”

*Commum. Math. Helv.*,**42**, 222–236 (1967). - 58.
E. Calabi, “Construction and properties of some 6-dimensional almost complex manifolds,”

*Trans. Am. Math. Soc.*,**87**, No. 2, 407–438 (1958). - 59.
J. T. Cho and K. Sekigawa, “Six-dimensional quasi-Kählerian manifolds of constant sectional curvature,”

*Tsukuba J. Math.*,**22**, No. 3, 611–627 (1998). - 60.
N. A. Daurtseva, “On the existence of a structure of the class

*G*_{2}on a strictly nearly Kählerian six-dimensional manifold,”*Vestn. Tomsk. Univ. Ser. Mat. Mekh.*, No. 6 (32), 19–24 (2014). - 61.
R. Deszcz, F. Dillen, L. Verstraelen, and L. Vrancken, “Quasi-Einstein totally real submanifolds of nearly Kählerian 6-spher,”

*Tôhoku Math. J.*,**51**, 461–478 (1999). - 62.
M. Djoric and L. Vrancken, “Three-dimensional CR-submanifolds in the nearly Kählerian 6- sphere with one-dimensional nullity,”

*Int. J. Math.*,**20**, No. 2, 189–208 (2009). - 63.
B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko,

*Modern Geometry. Methods and Applications*[in Russian], Nauka, Moscow (1986). - 64.
N. Ejiri, “Totally real submanifolds in a 6-sphere,”

*Proc. Am. Math. Soc.*,**83**, 759–763 (1981). - 65.
H. Endo, “On the curvature tensor of nearly cosymplectic manifolds of constant

*Phi*-sectional curvature,”*An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat.*,**51**, No. 2, 439–454 (2005). - 66.
H. Endo, “Remarks on nearly cosymplectic manifolds of constant

*Phi*-sectional curvature with a submersion of geodesic fibers,”*Tensor, N.S.*,**66**, 26–39 (2005). - 67.
H. Endo, “On nearly cosymplectic manifolds of constant

*Phi*-sectional curvature,”*Tensor, N.S.*,**67**, 323–335 (2006). - 68.
H. Endo, “Some remarks of nearly cosymplectic manifolds of constant

*Phi*-sectional curvature,”*Tensor, N.S.*,**68**, 204–221 (2007). - 69.
S. Funabashi and J. S. Pak, “Tubular hypersurfaces of the nearly Kählerian 6-sphere,”

*Saitama Math. J.*,**19**, 13–36 (2001). - 70.
G. Gheorghiev and V. Oproiu,

*Varietăţi diferentiabile finit şi infinit dimensionale*, Vols. I, II, Academia RSR, Bucureşti (1976, 1979). - 71.
A. Gray, “Some examples of almost Hermitian manifolds,”

*Ill. J. Math.*,**10**, No. 2, 353–366 (1966). - 72.
A. Gray, “Six-dimensional almost complex manifolds defined by means of three-fold vector cross products,”

*Tôhoku Math. J.*,**21**, No. 4, 614–620 (1969). - 73.
A. Gray, “Vector cross products on manifolds,”

*Trans. Am. Math. Soc.*,**141**, 465–504 (1969). - 74.
A. Gray, “Almost complex submanifolds of the six sphere,”

*Proc. Am. Math. Soc.*,**20**, 277–280 (1969). - 75.
A. Gray, “Nearly Kählerian manifolds,”

*J. Differ. Geom.*,**4**, 283–309 (1970). - 76.
A. Gray, “The structure of nearly Kählerian manifolds,”

*Math. Ann.*,**223**, 223–248 (1976). - 77.
A. Gray and L. M. Hervella, “The sixteen classes of almost Hermitian manifolds and their linear invariants,”

*Ann. Mat. Pura Appl.*,**123**, No. 4, 35–58 (1980). - 78.
Li Haizhong, “The Ricci curvature of totally real 3-dimensional submanifolds of the nearly Kählerian 6-sphere,”

*Bull. Belg. Math. Soc. Simon Stevin*,**3**, 193–199 (1996). - 79.
Li Haizhong and Wei Gouxin, “Classification of Lagrangian Willmore submanifolds of the nearly Kählerian 6-sphere

*S*^{6}(1) with constant scalar curvature,”*Glasgow Math. J.*,**48**, 53–64 (2006). - 80.
H. Hashimoto, “Characteristic classes of oriented six-dimensional submanifolds in the octonions,”

*Kodai Math. J.*,**16**, 65–73 (1993). - 81.
H. Hashimoto, “Oriented six-dimensional submanifolds in the octonions,”

*Int. J. Math. Math. Sci.*,**18**, 111–120 (1995). - 82.
H. Hashimoto, T. Koda, K. Mashimo, and K. Sekigawa, “Extrinsic homogeneous Hermitian six-dimensional submanifolds in the octonions,”

*Kodai Math. J.*,**30**, 297–321 (2007). - 83.
Z. Hu and Y. Zhang, “Rigidity of the almost complex surfaces in the nearly K¨ahlerian

*S*^{3}*×S*^{3},”*J. Geom. Phys.*,**100**, 80–91 (2016). - 84.
N. E. Hurt,

*Geometric Quantization in Action. Applications of Harmonic Analysis in Quantum Statistical Mechanics and Quantum Field Theory*, Reidel, Dordrecht–Boston–London (1983). - 85.
S. Ianus,

*Geometrie diferentială cu aplicaţii în teoria relativităţii*, Editura Acad. Române, Bucureşti (1983). - 86.
Y. Ishii, “On conharmonic transformations,”

*Tensor, N.S.*,**7**, 73–80 (1957). - 87.
J. Jost,

*Riemannian Geometry and Geometric Analysis*, Springer-Verlag, Berlin–Heidelberg–New-York (2003). - 88.
A. L. Kholodenko,

*Applications of Contact Geometry and Topology in Physics*, World Scientific, New Jersey–London–Singapore (2013). - 89.
H. S. Kim and R. Takagi, “The type number of real hypersurfaces in

*P*_{n}(*C*),”*Tsukuba J. Math.*,**20**, 349–356 (1996). - 90.
V. F. Kirichenko, “Almost Kählerian structures indiced by 3”=vector products on sixdimensional submanifolds of the Cayley algebra,”

*Vestn. Mosk. Univ. Ser.*1*. Mat. Mekh.*,**3**, 70–75 (1973). - 91.
V. F. Kirichenko, “Classification of Kählerian structures induced by 3”=vector products on sixdimensional submanifolds of the Cayley algebra,”

*Izv. Vyssh. Ucheb. Zaved. Ser. Mat.*, No. 8, 32–38 (1980). - 92.
V. F. Kirichenko, “Stability of almost Hermitian structures induced by 3”=vector products on six-dimensional submanifolds of the Cayley algebra,”

*Ukr. Geom. Sb.*,**25**, 60–68 (1982). - 93.
V. F. Kirichenko, “Methods of generalized Hermitian geometry in the theory of almost contact manifolds,”

*Itogi Nauki Tekh. Probl. Geom.*,**18**, 25–71 (1986). - 94.
V. F. Kirichenko,

*Differential-Geometric Structures on Manifolds*[in Russian], Odessa (2013). - 95.
V. F. Kirichenko and M. B. Banaru, “Almost contact metric structures on hypersurfaces of almost Hermitian manifolds,”

*Itogi Nauki Tekh. Sovr. Mat. Prilozh. Temat. Obzory*,**127**, 5–40 (2014). - 96.
V. F. Kirichenko, A. R. Rustanov, and A. Shikhab, “Geometry of the tensor of conharmonic curvature of an almost Hermitian manifold,”

*Mat. Zametki*,**90**, No. 1, 87–103 (2011). - 97.
V. F. Kirichenko and A. A. Shihab, “On the geometry of conharmonic curvature tensor for nearly Kählerian manifolds,”

*Fundam. Prikl. Mat.*,**16**, No. 2, 43–54 (2010). - 98.
V. F. Kirichenko and I. V. Uskorev, “Invariants of conformal transformations of almost contact metric structures,”

*Mat. Zametki*,**84**, No. 6, 838–850 (2008). - 99.
V. F. Kirichenko and L. I. Vlasova, “Concircular geometry of nearly Kählerian manifolds,”

*Mat. Sb.*,**193**, No. 5, 51–76 (2002). - 100.
Sh. Kobayashi and K. Nomizu,

*Foundations of Differential Geometry*, Vol. I, Interscience, New York–London (1963). - 101.
Sh. Kobayashi and K. Nomizu,

*Foundations of Differential Geometry*, Vol. II, Interscience, New York–London (1969). - 102.
H. Kurihara, “On real hypersurfaces in a complex space form,”

*Math. J. Okayama Univ.*,**40**, 177–186 (1998). - 103.
H. Kurihara, “The type number on real hypersurfaces in a quaternionic space form,”

*Tsukuba J. Math.*,**24**, 127–132 (2000). - 104.
H. Kurihara and R. Takagi, “A note on the type number of real hypersurfaces in

*P*_{n}(*C*),”*Tsukuba J. Math.*,**22**, 793–802 (1998). - 105.
E. V. Kusova,

*On Geometry of Weakly Cosymplectic Structures*[in Russian], Ph.D. thesis, Moscow (2013). - 106.
M. Matsumoto, “On six-dimensional almost Tachibana spaces,”

*Tensor, N.S.*,**23**, 250–252 (1972). - 107.
A. S. Mishchenko and A. T. Fomenko,

*A Course of Differential Geometry and Topology*[in Russian], Moscow (1980). - 108.
A. Moroianu and U. Semmelmann, “Infinitesimal Einstein deformations of nearly Kählerian metrics,”

*Trans. Am. Math. Soc.*,**363**, No. 6, 3057–3069 (2011). - 109.
P.-A. Nagy, “On nearly-Kählerian geometry,”

*Ann. Global Anal. Geom.*,**22**, 167–178 (2002). - 110.
R. Nivas and A. Agnihotri, “On semisymmetric nonmetric connections on a nearly Kählerian manifold,”

*Tensor, N.S.*,**72**, 279–284 (2010). - 111.
E. Omachi, “On nearly K¨ahlerian manifolds with almost analytic Ricci operator,”

*Tensor, N.S.*,**71**, 87–90 (2009). - 112.
G. Pitiş,

*Geometry of Kenmotsu Manifolds*, Publ. House Transilvania Univ., Braşov (2007). - 113.
P. K. Rashevskii,

*Riemannian Geometry and Tensor Analysis*[in Russian], Nauka, Moscow (1967). - 114.
K. Sekigawa, “Almost complex submanifolds of a six-dimensional sphere,”

*Kodai Math. J.*,**6**, 174–185 (1983). - 115.
R. Sharma and S. Deshmukh, “On Lagrangian submanifolds of the nearly Kählerian 6-sphere,”

*Contemp. Math.*,**674**, 153–160 (2016). - 116.
S. S. Shern, M. P. Do Carmo, and Sh. Kobayashi, “Minimal submanifolds of a sphere with second fundamental form of constant length,” in:

*Functional Analysis and Related Fields*, Springer-Verlag, Berlin (1970), pp. 59–75. - 117.
L. V. Stepanova, “Quasi-Sasakian structures on hypersurfaces of Hermitian manifolds,”

*Nauch. Tr. Mosk. Ped. Gos. Univ.*, 187–191(1995). - 118.
L. V. Stepanova,

*Quasi-Sasakian structures on hypersurfaces of Hermitian manifolds*[in Russian], Ph.D. thesis, Moscow (1995). - 119.
L. V. Stepanova, G. A. Banaru, and M. B. Banaru, “On quasi-Sasakian hypersurfaces of Kählerian manifolds,”

*Izv. Vyssh. Ucheb. Zaved. Ser. Mat.*, No. 1, 86–89 (2016). - 120.
R. Takagi, “A class of hypersurfaces with constant principal curvatures in a sphere,”

*J. Differ. Geom.*,**11**, 225–233 (1976). - 121.
F. Tricerri and L. Vanhecke, “Curvature tensors on almost Hermitian manifolds,”

*Trans. Am. Math. Soc.*,**267**, 365–398 (1981). - 122.
L. Vanhecke, “The Bochner curvature tensor on almost Hermitian manifolds,”

*Geom. Dedicata*,**6**, 389–397 (1977). - 123.
L. Vezzoni, “On the canonical Hermitian connection in nearly Kähler manifolds,”

*Kodai Math. J.*,**32**, 420–431 (2009). - 124.
L. Vranchen, “Special Lagrangian submanifolds of the nearly Kähler 6-sphere,”

*Glasgow Math. J.*,**45**, 415–426 (2003). - 125.
K. Yano,

*Differential Geometry on Complex and Almost Complex Spaces*, Pergamon Press, Oxford (1965). - 126.
K. Yano and S. Ishihara, “Almost contact structures induced on hypersurfaces in complex and almost complex spaces,”

*Kodai Math. Sem. Rep.*,**17**, No. 3, 222–249 (1965). - 127.
K. Yano and M. Kon,

*Structures on Manifolds*, World Scientific, Singapore (1984).

## Author information

## Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 146, Geometry, 2018.

## Rights and permissions

## About this article

### Cite this article

Banaru, M.B. On the Six-dimensional Sphere with a Nearly Kählerian Structure.
*J Math Sci* **245, **553–567 (2020). https://doi.org/10.1007/s10958-020-04711-6

Published:

Issue Date:

### Keywords and phrases

- ordinary differential equation
- invariant
- connection
- classification
- differential-algebraic characteristics
- symmetry group

### AMS Subject Classification

- 34A26
- 53A55