We consider some problems concerning a probabilistic interpretation of the Cauchy problem solution for the equation \( \frac{\partial u}{\partial t}=\frac{1}{2}\left(S\nabla, \kern0.33em \nabla \right)u, \) where *S* is a symmetric complex matrix such that Re *S* ≥ 0.

This is a preview of subscription content, log in to check access.

## Access options

### Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price **includes VAT** for USA

### Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the **net price**. Taxes to be calculated in checkout.

## References

- 1.
I. A. Ibragimov, N. V. Smorodina, and M. M. Faddeev, “Limit theorem on the convergence of random walk functionals to a solution of the Cauchy problem for the equation \( \frac{\partial u}{\partial t}=\frac{\sigma^2}{2}\varDelta u \) with complex

*σ*,”*Zap. Nauchn. Semin. POMI*,**420**, 88–102 (2013). - 2.
I. A. Ibragimov, N. V. Smorodina, and M. M. Faddeev, “A complex analog of the central limit theorem and a probabilistic approximation of the Feinman integral,”

*Dokl. Ros. Akad. Nauk*,**459**, 400–402 (2014). - 3.
E. M. Stein and G. Weiss,

*Introduction in Fourer Analysis on Euclidean Spaces*[Russian translation], Moscow (1974). - 4.
T. Kato,

*Perturbation Theory for Linear Operators*[Russian translation], Moscow (1972). - 5.
N. Dunford and J. T. Schwartz,

*Linear Operators*. I.*General Theory*[Russian translation], Moscow (1962). - 6.
D. K. Faddeev, B. Z. Vulikh, N. N. Uraltseva et al.,

*Selected Chapters of Analysis and Higher Algebra*[in Russian], Leningrad Univ. (1981).

## Author information

## Additional information

Translated from *Zapiski Nauchnykh Seminarov POMI*, Vol. 466, 2017, pp. 134–144.

Translated by S. Yu. Pilyugin.

## Rights and permissions

## About this article

### Cite this article

Ibragimov, I.A., Smorodina, N.V. & Faddeev, M.M. A Probabilistic Approximation of the Evolution Operator exp (t (S∇**,** ∇)) with a Complex Matrix S.
*J Math Sci* **244, **789–795 (2020). https://doi.org/10.1007/s10958-020-04652-0

Received:

Published:

Issue Date: