Advertisement

Journal of Mathematical Sciences

, Volume 237, Issue 2, pp 329–331 | Cite as

Bezout Rings, Annihilators, and Diagonalizability

  • A. A. TuganbaevEmail author
Article
  • 8 Downloads

Abstract

Let A be a right invariant ring. If A is a diagonalizable ring or an exchange Bezout ring, then B + r(M) = r(M/MB) for every finitely generated right A-module M and any ideal B of the ring A.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. S. Golod, “A remark on commutative arithmetic rings,” J. Math. Sci., 213, No. 2, 143–144 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    E. S. Golod and A. A. Tuganbaev, “Annihilators and finitely generated modules,” Fundam. Prikl. Mat., 21, No. 1, 79–82 (2016).MathSciNetzbMATHGoogle Scholar
  3. 3.
    I. Kaplansky, “Elementary divisors and modules,” Trans. Am. Math. Soc., 19, No. 2, 21–23 (1949).MathSciNetzbMATHGoogle Scholar
  4. 4.
    A. A. Tuganbaev, Semidistributive Modules and Rings, Kluwer Academic, Dordrecht (1998).CrossRefzbMATHGoogle Scholar
  5. 5.
    A. A. Tuganbaev, “Bezout rings without non-central idempotents,” Discrete Math. Appl., 26, No. 6, 369–377 (2016).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Research University “MPEI,”MoscowRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations