## Abstract

The paper contains a review of results on the theory of semirings of continuous functions.

## Preview

Unable to display preview. Download preview PDF.

## References

- 1.S. K. Acharyya, K. S. Chattopalhyay, and G. G. Ray, “Hemirings, congruences and the Stone–Čech compactification,”
*Bull. Belg. Math. Soc. Simon Stevin*,**67**, 21–35 (1993).zbMATHGoogle Scholar - 2.S. K. Acharyya, K. S. Chattopalhyay, and G. G. Ray, “Hemirings, congruences and the Hewitt realcompactification,”
*Bull. Belg. Math. Soc. Simon Stevin*,**2**, No. 1, 47–58 (1995).MathSciNetzbMATHGoogle Scholar - 3.J. Araujo, “Multiplicative bijections of semigroups of interval-valued continuous functions,”
*Proc. Am. Math. Soc.*,**137**, 171–178 (2009).MathSciNetzbMATHCrossRefGoogle Scholar - 4.A. V. Arkhangel’skii,
*Topological Function Spaces*[in Russian], Izd. Mosk. Univ., Moscow (1989).Google Scholar - 5.I. I. Artamonova, V. V. Chermnykh, A. V. Mikhalev, V. I. Varankina, and E. M. Vechtomov, “Semirings: sheaves and continuous functions,” in:
*Proc. Int. Conf. “Semigroups with Applications, Including Semigroup Rings,”*Saint-Petersburg, 1999, pp. 23–58.Google Scholar - 6.G. Birkhoff,
*Lattice Theory*[Russian translation], Nauka, Moscow (1984).Google Scholar - 7.N. Bourbaki,
*Algebra*(*Polynomials and Fields. Ordered Groups*) [Russian translation], Nauka, Moscow (1965).Google Scholar - 8.N. Bourbaki,
*General Topology. Topological Groups. Numbers and Groups and Spaces Related to Them*[Russian translation], Nauka, Moscow (1969).Google Scholar - 9.N. Bourbaki,
*General Topology. Applications of Real Numbers in General Topology. Functional Spaces. Summary of Results*[Russian translation], Nauka, Moscow (1975).Google Scholar - 10.F. Cabello Sánchez, J. Cabello Sánchez, Z. Ercan, and S. Önal, “Memorandum on multiplicative bijections and order,”
*Semigroup Forum*,**79**, No. 1, 193–209 (2009).MathSciNetzbMATHCrossRefGoogle Scholar - 11.V. V. Chermnykh,
*Sheaf Representations of Semirings*[in Russian], Candidate’s Dissertation in Physics and Mathematics, Moscow Ped. State Univ., Moscow (1993).Google Scholar - 12.V. V. Chermnykh, “On completeness of sheaf representations of semirings,”
*Fundam. Prikl. Mat.*,**2**, No. 1, 267–277 (1996).MathSciNetzbMATHGoogle Scholar - 13.V. V. Chermnykh,
*Semirings*[in Russian], Vyatka State Ped. Univ., Kirov (1997).Google Scholar - 14.V. V. Chermnykh, “Semirings sections of the sheaves,”
*Vestn. Vyatsk. Gos. Guman. Univ.*,**13**, 151–158 (2005).Google Scholar - 15.V. V. Chermnykh,
*Functional Representations of Semirings and Semimodules*[in Russian], Doctoral Dissertation in Physics and Mathematics, The Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg (2007).Google Scholar - 16.V. V. Chermnykh,
*Functional Representations of Semirings*[in Russian], Vyatka State Humanities Univ., Kirov (2010).Google Scholar - 17.V. V. Chermnykh, “Functional representations of semirings,”
*Fundam. Prikl. Mat.*,**17**, No. 3, 111–227 (2012).MathSciNetzbMATHGoogle Scholar - 18.D. V. Chuprakov, “On kernels of semifields of continuous functions,” in:
*Proc. Int. Alg. Conf., Dedic. 100th Anniversary of A. G. Kurosh*[in Russian], Moscow (2008), pp. 251–253.Google Scholar - 19.D. V. Chuprakov, “On maximal congruences on semirings of continuous functions with idempotent addition,”
*Mat. Vestn. Pedvuz. Univ. Volgo-Vyatsk. Reg.*,**10**, 99–110 (2008).Google Scholar - 20.D. V. Chuprakov, “On retracts of lattices of congruences of semirings of continuous functions,” in:
*Proc.*VI*Youth School-Conf. “Lobachevsky Readings”*[in Russian], Kazan (2008), pp. 241–243.Google Scholar - 21.D. V. Chuprakov, “Complements of congruences in semirings of continuous functions,”
*Mat. Vestn. Pedvuz. Univ. Volgo-Vyatsk. Reg.*,**11**, 122–127 (2009).Google Scholar - 22.D. V. Chuprakov,
*Congruences on Semirings and Semifields of Continuous Numerical Functions*[in Russian], Candidate’s Dissertation in Physics and Mathematics, Kazan State Univ., Kazan (2009).Google Scholar - 23.D. V. Chuprakov, “Distributivity conditions for the congruence’s lattice of semirings of continuous functions,”
*Vestn. Udmurt. Univ. Mat. Mech. Comp. Nauki*,**3**, 128–134 (2009).CrossRefGoogle Scholar - 24.B. J. Day, “Gelfand dualities over topological fields,”
*J. Aust. Math. Soc. Ser. A*,**32**, No. 2, 171–177 (1982).MathSciNetzbMATHCrossRefGoogle Scholar - 25.R. Engelking,
*General Topology*[Russian translation], Mir, Moscow (1986).Google Scholar - 26.I. M. Gelfand and A. N. Kolmogorov, “On rings of continuous functions on topological spaces,”
*Dokl. Akad. Nauk SSSR*,**22**, No. 1, 11–15 (1939).zbMATHGoogle Scholar - 27.L. Gillman and M. Jerison,
*Rings of Continuous Functions*, Van Nostrand, Preston (1960).Google Scholar - 28.L. Gillman and M. Henriksen, “Concerning rings of continuous functions,”
*Trans. Am. Math. Soc.*,**77**, No. 2, 340–362 (1954).MathSciNetzbMATHCrossRefGoogle Scholar - 29.L. Gillman and M. Henriksen, “Rings of continuous functions in which every finitely generated ideal is principal,”
*Trans. Am. Math. Soc.*,**82**, No. 2. 366–391 (1956).MathSciNetzbMATHCrossRefGoogle Scholar - 30.L. Gillman, M. Henriksen, and M. Jerison, “On a theorem of Gelfand and Kolmogoroff concerning maximal ideals in rings of continuous functions,”
*Proc. Am. Math. Soc.*,**5**, No. 3, 447–455 (1954).MathSciNetzbMATHCrossRefGoogle Scholar - 31.J. S. Golan,
*Semirings and Their Applications*, Kluwer Academic, Dordrecht (1999).Google Scholar - 32.G. Grätzer,
*General Lattice Theory*[Russian translation], Mir, Moscow (1982).Google Scholar - 33.J. Gunawardena, ed.,
*Idempotency*, Cambridge Univ. Press, Cambridge (1998).Google Scholar - 34.A. E. Guterman,
*Frobenius Endomorphisms of Matrix Spaces*[in Russian], Doctoral Dissertation in Physics and Mathematics, MSU, Moscow (2008).Google Scholar - 35.F. Hausdorff,
*Set Theory*[Russian Translation], KomKniga, Moscow (2006).Google Scholar - 36.M. Henriksen,
*Rings of Continuous Functions from an Algebraic Point of View. Ordered Algebraic Structures*, Kluwer Academic, Dordrecht (1989).Google Scholar - 37.M. Henriksen, “Rings of continuous functions in the 1950s,” in:
*Handbook of the History of General Topology*,**1**, 243–253 (1997).Google Scholar - 38.E. Hewitt, “Rings of real-valued continuous functions. I,”
*Trans. Am. Math. Soc.*,**64**, No. 1, 45–99 (1948).Google Scholar - 39.D. Ipate and R. Lupu, “About rings of continuouse functions in the expanded field of numbers,”
*Bul. Acad. S, tiint e Repub. Mold. Mat.*,**1**, No. 62, 47–54 (2010).zbMATHGoogle Scholar - 40.I. Kaplansky, “Topological rings,”
*Am. Math. J.*,**69**, No. 2, 153–183 (1947).MathSciNetzbMATHCrossRefGoogle Scholar - 41.A. Ya. Khelemskii,
*Banach and Polynormed Algebras: General Theory, Representations, and Homology*[in Russian], Nauka, Moscow, 1989.Google Scholar - 42.A. N. Kolmogorov and S. V. Fomin,
*Elements of the Theory of Functions and Functional Analysis*[in Russian], Nauka, Moscow (1989).Google Scholar - 43.E. N. Lubyagina,
*Semirings of Continuous*[0*,*1]*-Valued Functions*[in Russian], Candidate’s Dissertation in Physics and Mathematics, The Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg (2012).Google Scholar - 44.E. N. Lubyagina, “The partial rings of continuous functions,”
*Nauch.-Tekhn. Vestn. Povolzh.*,**3**, 44–46 (2015).Google Scholar - 45.J. Marovt, “Multiplicative bijections of
*C*(*X, I*),”*Proc. Am. Math. Soc.*,**134**, No. 4, 1065–1075 (2005).MathSciNetzbMATHCrossRefGoogle Scholar - 46.V. P. Maslov and V. N. Kolokoltsov,
*Idempotent Analysis and Its Application to Optimal Control*[in Russian], Nauka, Moscow (1994).Google Scholar - 47.A. N. Milgram, “Multiplicative semigroups of continuous functions,”
*Duke Math. J.*,**16**, No. 2, 377–383 (1949).MathSciNetzbMATHCrossRefGoogle Scholar - 48.J. Nagata, “On lattices of functions on topological spaces and of functions on uniform spaces,”
*Osaka Math. J.*,**1**, No. 2, 166–181 (1949).MathSciNetzbMATHGoogle Scholar - 49.M. A. Naimark,
*Normed Rings*[in Russian], Nauka, Moscow (1968).Google Scholar - 50.V. V. Pashenkov, “On dualities,”
*Dokl. Akad. Nauk SSSR*,**222**, No. 6, 1295–1298 (1975).MathSciNetGoogle Scholar - 51.M. N. Podlevskikh, “Closed congruences on semirings of continuous functions,”
*Fundam. Prikl. Mat.*,**5**, No. 3, 947–952 (1999).MathSciNetzbMATHGoogle Scholar - 52.M. N. Podlevskikh,
*Semirings of Continuous Functions with Topology of Pointwise Convergence*[in Russian], Candidate’s Dissertation in Physics and Mathematics, Moscow Ped. State Univ., Moscow (1999).Google Scholar - 53.L. S. Pontryagin,
*Continuous Groups*[in Russian], Nauka, Moscow (1984).Google Scholar - 54.W. Rudin,
*Functional Analysis*[Russian translation], Mir, Moscow (1975).Google Scholar - 55.A. N. Semenov, “On subalgebras of semirings of continuous functions,”
*Mat. Vestn. Pedvuz. Volgo-Vyatsk. Reg.*,**1**, 83–90 (1998).Google Scholar - 56.A. N. Semenov, “On subalgebras of semirings of continuous functions,” in:
*Proc. Int. Kurosh Alg. Conf.*[in Russian], Moscow (1998), pp. 208–209.Google Scholar - 57.A. N. Semenov, “On lattice of congruences of semifields,”
*Vestn. Vyatsk. Gos. Guman. Univ.*,**9**, 92–95 (2003).Google Scholar - 58.I. A. Semenova, “Principal congruences on a semifield of continuous positive functions,”
*Vestn. Vyatsk. Gos. Ped. Univ. Ser. Yest. Nauk. Mat., Inform., Fiz.*,**1**, 14–16 (1996).Google Scholar - 59.I. A. Semenova, “Congruences on a semifield of continuous positive functions and his strongly convex multiplicative subgroups,”
*Vestn. Vyatsk. Gos. Ped. Univ. Ser. Yest. Nauk. Mat., Inform., Fiz.*,**3**, 30–32 (1997).Google Scholar - 60.I. A. Semenova,
*Congruences on Semirings of Continuous Functions*[in Russian], Candidate’s Dissertation in Physics and Mathematics, Moscow Ped. State Univ., Moscow (1998).Google Scholar - 61.I. A. Semenova, “The determination of Hewitt spaces
*X*by lattice of congruences of semirings of continuous nonnegative functions on*X*,”*Vestn. Vyatsk. Gos. Ped. Univ.*,**1**, 20–23 (1999).Google Scholar - 62.I. A. Semenova, “Maximal congruences on a semifield of continuous positive functions,”
*Fundam. Prikl. Mat.*,**8**, No. 1, 305–310 (2000).MathSciNetzbMATHGoogle Scholar - 63.N. V. Shalaginova, “Three sheaves for semirings of continuous functions,” in:
*Proc.*VI*Youth School-Conf. “Lobachevsky Readings–2010”*[in Russian], Kazan (2010), pp. 367–372.Google Scholar - 64.N. V. Shalaginova, “On semirings of germs of continuous nonnegative functions,”
*Nauch.-Tekhn. Vestn. Povolzh.*,**3**, 40–43 (2011).Google Scholar - 65.N. V. Shalaginova, “Maximal ideals of partial semirings of continuous [0
*,∞*]-valued functions,” in:*Proc. Youth Conf. “Actual Problems of Mathematics, Mechanics and Computer Science–2013”*[in Russian], Perm (2013), p. 178.Google Scholar - 66.N. V. Shalaginova, “On semirings of continuous functions with values in (0
*,∞*],” in:*Proc.*XIV*Sci. Youth School-Conf. “Lobachevsky Readings–2015”*[in Russian], Kazan (2015), pp. 170–171.Google Scholar - 67.N. V. Shalaginova and E. M. Vechtomov, “Congruences on the semiring (0
*,∞*]*n*,” in:*Proc. All-Russ. Conf. “Fundamental and Applied Problems of Mechanics, Mathematics and Computer Science*[in Russian], Perm (2015), pp. 35–39.Google Scholar - 68.N. V. Shalaginova and E. M. Vechtomov, “To the theory of partial semirings of continuous [0
*,∞*]-valued functions,”*Lobachevskii J. Math.*,**36**, No. 4, 341–348 (2015).MathSciNetzbMATHCrossRefGoogle Scholar - 69.D. V. Shirokov, “Distributivity conditions for the lattice of congruences of the semifield of continuous positive functions,”
*Vestn. Vyatsk. Gos. Guman. Univ.*,**8**, 137–140 (2003).Google Scholar - 70.D. V. Shirokov, “Baer injectivity for semirings of continuous nonnegative functions,”
*Mat. Vestn. Pedvuz. Univ. Volgo-Vyatsk. Reg.*,**7**, 94–104 (2005).Google Scholar - 71.D. V. Shirokov,
*Ideals in Semirings of Continuous Functions*[in Russian], Candidate’s Dissertation in Physics and Mathematics, Moscow Ped. State Univ., Moscow (2005).Google Scholar - 72.D. V. Shirokov, “Properties of ideals of semirings of continuous nonnegative functions,” in:
*Proc. Int. Alg. Conf. Dedic. to 100th Anniversary of P. G. Kontorovich and 70th Anniversary of L. N. Shevrin*[in Russian], Ekaterinburg (2005), pp. 118–120.Google Scholar - 73.D. V. Shirokov, “Semirings of continuous nonnegative functions: flat ideals and semiring’s characterizations of topological properties,”
*Vestn. Vyatsk. Gos. Guman. Univ. Inform. Mat. Yazyk*,**13**, 166–170 (2005).Google Scholar - 74.D. V. Shirokov, “The ideals of semirings of continuous nonnegative functions: purity and projectivity,”
*Vestn. Vyatsk. Gos. Guman. Univ.*,**12**, 201–210 (2005).Google Scholar - 75.Ya. N. Shitov,
*Linear Algebra over Semirings*[in Russian], Doctoral Dissertation in Physics and Mathematics, MSU, Moscow (2015).Google Scholar - 76.V. V. Sidorov,
*Isomorphisms of Lattices of Subalgebras of Semirings of Continuous Nonnegative Functions*[in Russian], Candidate’s Dissertation in Physics and Mathematics, Kazan Federal University, Kazan (2011).Google Scholar - 77.V. V. Sidorov, “Structure of lattice of isomorphisms of semirings generated by a one nonnegative function,”
*Vestn. Syktyvkar. Univ. Ser. 1. Mat. Mekh. Inform.*,**13**, 11–36 (2011).Google Scholar - 78.V. V. Sidorov, “The automorphism group of the lattice of all subalgebras of the semiring of polynomials over the semifield of nonnegative real numbers,”
*Izv. Vyssh. Uchebn. Zaved., Mat.*,**4**, 104–107 (2011).MathSciNetGoogle Scholar - 79.V. V. Sidorov, “Automorphisms of the lattice of all subalgebras of the semiring of polynomials in one variable,”
*Fundam. Prikl. Mat.*,**17**, No. 3, 85–96 (2012).zbMATHGoogle Scholar - 80.V. V. Sidorov, “Isomorphisms of lattices of subalgebras of semirings of continuous nonnegative functions with the max-plus,”
*Fundam. Prikl. Mat.*,**19**, No. 6, 153–189 (2014).Google Scholar - 81.V. V. Sidorov, “The determination of compact spaces by lattice of subalgebras of semifields
*U*(*X*),”*Fundam. Issled.*,**6**, No. 6, 1191–1194 (2014).Google Scholar - 82.V. V. Sidorov, “Isomorphisms of semifields of continuous positive functions with the max-plus,” in:
*Proc. Int. Conf. “Algebra, Number Theory and Discrete Geometry: Contemporary Problems and Applications”*[in Russian], Tula (2015), pp. 184–185.Google Scholar - 83.W. Slowikowski and A. Zawadowsci, “A generalization of maximal ideals method of Stone and Gelfand,”
*Fund. Math.*,**42**, No. 2, 215–231 (1955).MathSciNetzbMATHCrossRefGoogle Scholar - 84.M. N. Smirnova (Podlevskikh), “Closed ideals in semirings of continuous functions with topology of pointwise convergence,”
*Vestn. Vyatsk. Gos. Ped. Univ. Ser. Yest. Nauk. Mat., Inform., Fiz.*,**1**, 16–18 (1996).Google Scholar - 85.M. N. Smirnova (Podlevskikh), “Duality theorems for semirings of continuous functions with topology of pointwise convergence,” in:
*Proc. Int. Conf. Women Math.*[in Russian], Volgograd (1996), pp. 115–116.Google Scholar - 86.M. N. Smirnova (Podlevskikh), “On closed subalgebras in semirings of continuous functions,” in:
*Proc. Int. Conf. Women Math.*[in Russian], Rostov-on-Don (1997), pp. 64–65.Google Scholar - 87.M. H. Stone, “The theory of representations for Boolean algebras,”
*Trans. Am. Math. Soc.*,**40**, No. 1, 3–111 (1936).MathSciNetGoogle Scholar - 88.M. H. Stone, “Applications of the theory of Boolean rings to general topology,”
*Trans. Am. Math. Soc.*,**41**, No. 3, 375–481 (1937).MathSciNetzbMATHCrossRefGoogle Scholar - 89.H. S. Vandiver, “Note on a simple type of algebra in which cancellation law of addition does not hold,”
*Bull. Am. Math. Soc.*,**40**, 914–920 (1934).MathSciNetzbMATHCrossRefGoogle Scholar - 90.A. V. Varankin, “Congruence on semirings of continuous nonnegative functions, generated filters,”
*Mat. Vestn. Pedvuz. Univ. Volgo-Vyatsk. Reg.*,**2**, 3–10 (2000).Google Scholar - 91.V. I. Varankina, “Maximal ideals in semirings of continuous functions,”
*Fundam. Prikl. Mat.*,**1**, No. 4, 923–937 (1995).MathSciNetzbMATHGoogle Scholar - 92.V. I. Varankina,
*Maximal Ideals and Divisibility in Semirings of Continuous Functions*[in Russian], Candidate’s Dissertation in Physics and Mathematics, Moscow Ped. State Univ., Moscow (1996).Google Scholar - 93.V. I. Varankina and E. M. Vechtomov, “The scientific algebraic school,”
*Gertsenka*:*Vyatsk. Zap.*,**15**, 199–207, (2009).Google Scholar - 94.V. I. Varankina, E. M. Vechtomov, and I. A. Semenova, “Semirings of continuous nonnegative functions: divisibility, ideals, congruences,”
*Fundam. Prikl. Mat.*,**4**, No. 2, 493–510 (1998).MathSciNetzbMATHGoogle Scholar - 95.V. I. Varankina, E. M. Vechtomov, and M. N. Smirnova, “Spaces of prime ideals of semirings of continuous functions,”
*Vestn. Vyatsk. Gos. Ped. Univ. Ser. Yest. Nauk. Mat., Inform., Fiz.*,**3**, 4–7 (1997).Google Scholar - 96.E. M. Vechtomov, “Rings and sheaves,”
*J. Math. Sci.*,**74**, No. 1, 749–798 (1995).MathSciNetzbMATHCrossRefGoogle Scholar - 97.E. M. Vechtomov, “Rings of continuous functions with values in a topological division ring,”
*J. Math. Sci.*,**78**, No. 6, 702–753 (1996).MathSciNetzbMATHCrossRefGoogle Scholar - 98.E. M. Vechtomov,
*The Determination of Topological Spaces by Semigroups of Continuous Partial Functions*, Deposited at VINITI No. 256-B88 (1988).Google Scholar - 99.E. M. Vechtomov, “On semigroups of continuous partial functions of topological spaces,”
*Usp. Mat. Nauk*,**46**, No. 4, 143–144 (1990).MathSciNetzbMATHGoogle Scholar - 100.E. M. Vechtomov, “Questions on the determination of topological spaces by algebraic systems of continuous functions,”
*Itogi Nauki Tekh. Ser. Algebra. Topol. Geom.*,**28**, 3–46 (1990).MathSciNetzbMATHGoogle Scholar - 101.E. M. Vechtomov, “Rings of continuous functions. Algebraic aspects,”
*Itogi Nauki Tekh. Ser. Algebra. Topol. Geom.*,**29**, 119–191 (1991).MathSciNetzbMATHGoogle Scholar - 102.E. M. Vechtomov, “On the Gelfand–Kolmogorov theorem on maximal ideals of rings of continuous functions,”
*Usp. Mat. Nauk*,**47**, No. 5, 171–172 (1992).MathSciNetzbMATHGoogle Scholar - 103.E. M. Vechtomov,
*Rings of Continuous Functions on Topological Spaces. Selected Topics*[in Russian], Moscow Pedagogical State Univ., Moscow (1992).Google Scholar - 104.E. M. Vechtomov, “
*T*_{0}-spaces and topological lattices of continuous {0*,*1}-valued functions,”*Zam. Tartusk. Univ.*,**940**, 101–106 (1992).MathSciNetzbMATHGoogle Scholar - 105.E. M. Vechtomov,
*Functional Representations of Rings*[in Russian], Moscow Pedagogical State Univ., Moscow (1993).Google Scholar - 106.E. M. Vechtomov,
*Rings of Continuous Functions with Values in Topological Division Ring*[in Russian], Doctoral Dissertation in Physics and Mathematics, Moscow (1993).Google Scholar - 107.E. M. Vechtomov, “Distributive lattices which have chain functional representation,”
*Fundam. Prikl. Mat.*,**2**, No. 1, 93–102 (1996).MathSciNetzbMATHGoogle Scholar - 108.E. M. Vechtomov, “Lattice of subalgebras of the ring of continuous functions and Hewitt spaces,”
*Mat. Zametki*,**62**, No. 5, 687–693 (1997).MathSciNetzbMATHCrossRefGoogle Scholar - 109.E. M. Vechtomov, “One class of maximal subalgebras of semirings of continuous nonnegative functions,”
*Vestn. Vyatsk. Gos. Ped. Univ. Ser. Yest. Nauk. Mat., Inform., Fiz.*,**3**, 7–10 (1997).MathSciNetGoogle Scholar - 110.E. M. Vechtomov, “Functional characterization of Stone lattices,”
*Vestn. Vyatsk. Gos. Ped. Univ.*,**2**, 9–11 (1999).Google Scholar - 111.E. M. Vechtomov, “On subalgebras of ring of continuous functions with values in a discrete division ring,”
*Vestn. Vyatsk. Gos. Ped. Univ.*,**1**, 19–20 (1999).Google Scholar - 112.E. M. Vechtomov,
*Introduction to Semirings*[in Russian], Vyatka State Pedagogical Univ., Kirov (2000).Google Scholar - 113.E. M. Vechtomov, “Semirings of continuous maps,”
*Vestn. Vyatsk. Gos. Guman. Univ.*,**10**, 57–64 (2004).Google Scholar - 114.E. M. Vechtomov, “Structure of semifields,”
*Vestn. Syktyvkar. Univ. Ser. 1. Mat. Mekh. Inform.*,**10**, 3–42 (2009).Google Scholar - 115.E. M. Vechtomov, “On the theory of semirings of continuous functions,” in:
*Proc. Int. Conf. “Mathematics. Education”*[in Russian], Cheboksary (2013), pp. 19–34.Google Scholar - 116.E. M. Vechtomov, “Semirings and sheaves. Review of the results of research for the period 2008–2012,”
*Vestn. Vyatsk. Gos. Guman. Univ.*,**1**, 185–193 (2013).Google Scholar - 117.E. M. Vechtomov, “Functional algebra: semirings of continuous functions,”
*Tr. Mat. Centra im. N. I. Lobachevskogo*,**52**, 38–40 (2015).Google Scholar - 118.E. M. Vechtomov and A. V. Cheraneva, “Semifields and their properties,”
*Fundam. Prikl. Mat.*,**14**, No. 5, 3–54 (2008).zbMATHGoogle Scholar - 119.E. M. Vechtomov and D. V. Chuprakov, “Congruences on semirings of continuous functions and F-spaces,”
*Vestn. Syktyvkar. Univ. Ser. 1. Mat. Mekh. Inform.*,**8**, 15–26 (2008).Google Scholar - 120.E. M. Vechtomov and D. V. Chuprakov, “The principal kernels of semifields of continuous positive functions,”
*Fundam. Prikl. Mat.*,**14**, No. 4, 87–107 (2008).zbMATHGoogle Scholar - 121.E. M. Vechtomov and D. V. Chuprakov, “Extension of congruences on semirings of continuous functions,”
*Mat. Zametki*,**85**, No. 6, 803–816 (2009).MathSciNetzbMATHCrossRefGoogle Scholar - 122.E. M. Vechtomov and D. V. Chuprakov, “Pseudocomplements in the lattice of congruences of semirings of continuous functions,”
*Vestn. Syktyvkar. Univ. Ser. 1. Mat. Mekh. Inform.*,**9**, 3–17 (2009).MathSciNetGoogle Scholar - 123.E. M. Vechtomov and E. N. Lubyagina, “About prime ideals of semirings of continuous functions with values in the unit segment,”
*Vestn. Udmurt. Univ. Mat. Mekh. Komp. Nauki*,**2**, 12–18 (2011).CrossRefGoogle Scholar - 124.E. M. Vechtomov and E. N. Lubyagina, “Lattices of continuous functions with values in the unit segment,”
*Vestn. Syktyvkar. Univ. Ser. 1. Mat. Mekh. Inform.*,**14**, 3–20 (2011).Google Scholar - 125.E. M. Vechtomov and E. N. Lubyagina “About semirings of sc-functions,”
*Vestn. Syktyvkar. Univ. Ser. 1. Mat. Mekh. Inform.*,**15**, 73–82 (2012).Google Scholar - 126.E. M. Vechtomov and E. N. Lubyagina, “The determinability of compacts by lattices of ideals and congruences of semirings of continuous [0
*,*1]-valued functions on them,”*Izv. Vyssh. Uchebn. Zaved., Mat.*,**1**, 87–91 (2012).zbMATHGoogle Scholar - 127.E. M. Vechtomov and E. N. Lubyagina, “The semiring of continuous [0
*,*1]-valued functions,”*Fundam. Prikl. Mat.*,**17**, No. 4, 53–82 (2012).zbMATHGoogle Scholar - 128.E. M. Vechtomov and E. N. Lubyagina, “Closed ideals and closed congruences of semirings of continuous [0
*,*1]-valued functions with topology of pointwise convergence,”*Tr. Inst. Mat. Mekh. UrO RAN*,**19**, No. 3, 83–93 (2013).MathSciNetGoogle Scholar - 129.E. M. Vechtomov and E. N. Lubyagina, “Semirings of partial functions,” in:
*Proc. Int. Conf. “Algebra, Number Theory and Discrete Geometry*:*Contemporary Problems and Applications”*[in Russian], Tula (2015), pp. 148–150.Google Scholar - 130.E. M. Vechtomov, E. N. Lubyagina, and V. V. Chermnykh,
*Elements of the Theory of Semirings*[in Russian], Vyatka State Humanities Univ., Kirov (2012).Google Scholar - 131.E. M. Vechtomov, A. V. Mikhalev, and V. V. Chermnykh, “Abelian regular positive semirings,”
*Tr. Semin. Petrovskogo*,**20**, 282–309 (1997).Google Scholar - 132.E. M. Vechtomov and N. V. Shalaginova, “About ideals of the partial semirings of continuous [0
*,∞*]-valued functions,” in:*Proc. Int. Conf. “Mathematics in the Modern World”*[in Russian], Vologda (2013), pp. 12–14.Google Scholar - 133.E. M. Vechtomov and N. V. Shalaginova, “About partial semirings of continuous [0
*,∞*]-valued functions,” in:*Int. Sci. Youth School-Conf. “Contemporary Problems in Mathematics and Its Applications”*[in Russian], Ekaterinburg (2014), pp. 16–19.Google Scholar - 134.E. M. Vechtomov and N. V. Shalaginova, “Ideals in partial semirings of continuous [0
*,∞*]-valued functions,” in:*Proc. Int. Conf. “Algebra and Number Theory*:*Contemporary Problems and Applications”*[in Russian], Tula (2014), pp. 158–161.Google Scholar - 135.E. M. Vechtomov and N. V. Shalaginova, “Prime ideals of the partial semirings of continuous [0
*,∞*]-valued functions,”*Vestn. Perm. Univ. Mat. Mekh. Inform.*,**1**, 5–12 (2014).Google Scholar - 136.E. M. Vechtomov and N. V. Shalaginova, “To the theory of partial semirings of continuous [0
*,∞*]-valued functions,” in:*Proc. Conf. “Algebra and Mathematical Logic: Theory and Applications,”*[in Russian], Kazan (2014), pp. 156–157.Google Scholar - 137.E. M. Vechtomov and N. V. Shalaginova, “About the ideals in semirings of continuous (0
*,∞*]-valued functions,” in:*Proc. Int. Conf. “Algebra, Number Theory and Discrete Geometry*:*Contemporary Problems and Applications”*[in Russian], Tula (2015), pp. 153–155.Google Scholar - 138.E. M. Vechtomov and V. V. Sidorov, “Isomorphisms of lattices of subalgebras of semirings of continuous nonnegative functions,”
*Fundam. Prikl. Mat.*,**16**, No. 3, 63–103 (2010).Google Scholar - 139.E. M. Vechtomov and V. V. Sidorov, “The determination of semirings of continuous functions by lattice their subalgebras,”
*Vestn. Syktyvkar. Univ. Ser. 1. Mat. Mekh. Inform.*,**11**, 112–125 (2010).Google Scholar - 140.E. M. Vechtomov and V. V. Sidorov, “Definability of Hewitt spaces by the lattices of subalgebras of semifields of continuous positive functions with max-plus,”
*Tr. Inst. Mat. Mekh. UrO RAN*,**21**, No. 3, 78–88 (2015).Google Scholar - 141.E. M. Vechtomov, V. V. Sidorov, and D. V. Chuprakov,
*Semirings of Continuous Functions*[in Russian], Vyatka State Humanities Univ., Kirov (2011).Google Scholar - 142.E. M. Vechtomov and M. N. Smirnova (Podlevskikh), “A duality for topological semirings of continuous functions,”
*Usp. Mat. Nauk*,**51**, No. 3, 187–188 (1996).Google Scholar - 143.E. M. Vechtomov and O. V. Starostina, “Structure of Abelian regular positive semirings,”
*Usp. Mat. Nauk*,**62**, No. 1, 199–200 (2007).MathSciNetzbMATHCrossRefGoogle Scholar - 144.E. M. Vechtomov and O. V. Starostina, “Generalized Abelian regular positive semirings,”
*Vestn. Syktyvkar. Univ. Ser. 1. Mat. Mekh. Inform.*,**7**, 3–16 (2007).MathSciNetzbMATHGoogle Scholar - 145.E. M. Vechtomov and V. I. Varankina, “Development a functional algebra in the Vyatka State Humanities University,”
*Vestn. Vyatsk. Gos. Guman. Univ.*,**4**, 136–144 (2015).Google Scholar - 146.V. K. Zakharov, A. V. Mikhalev, and A. A. Seredinskii, “Algebraic description of rings of continuous functions,”
*Usp. Mat. Nauk*,**56**, No. 1, (2001).Google Scholar

## Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019