Advertisement

Semirings of Continuous Functions

  • E. M. VechtomovEmail author
  • A. V. Mikhalev
  • V. V. Sidorov
Article
  • 2 Downloads

Abstract

The paper contains a review of results on the theory of semirings of continuous functions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. K. Acharyya, K. S. Chattopalhyay, and G. G. Ray, “Hemirings, congruences and the Stone–Čech compactification,” Bull. Belg. Math. Soc. Simon Stevin, 67, 21–35 (1993).zbMATHGoogle Scholar
  2. 2.
    S. K. Acharyya, K. S. Chattopalhyay, and G. G. Ray, “Hemirings, congruences and the Hewitt realcompactification,” Bull. Belg. Math. Soc. Simon Stevin, 2, No. 1, 47–58 (1995).MathSciNetzbMATHGoogle Scholar
  3. 3.
    J. Araujo, “Multiplicative bijections of semigroups of interval-valued continuous functions,” Proc. Am. Math. Soc., 137, 171–178 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    A. V. Arkhangel’skii, Topological Function Spaces [in Russian], Izd. Mosk. Univ., Moscow (1989).Google Scholar
  5. 5.
    I. I. Artamonova, V. V. Chermnykh, A. V. Mikhalev, V. I. Varankina, and E. M. Vechtomov, “Semirings: sheaves and continuous functions,” in: Proc. Int. Conf. “Semigroups with Applications, Including Semigroup Rings,” Saint-Petersburg, 1999, pp. 23–58.Google Scholar
  6. 6.
    G. Birkhoff, Lattice Theory [Russian translation], Nauka, Moscow (1984).Google Scholar
  7. 7.
    N. Bourbaki, Algebra (Polynomials and Fields. Ordered Groups) [Russian translation], Nauka, Moscow (1965).Google Scholar
  8. 8.
    N. Bourbaki, General Topology. Topological Groups. Numbers and Groups and Spaces Related to Them [Russian translation], Nauka, Moscow (1969).Google Scholar
  9. 9.
    N. Bourbaki, General Topology. Applications of Real Numbers in General Topology. Functional Spaces. Summary of Results [Russian translation], Nauka, Moscow (1975).Google Scholar
  10. 10.
    F. Cabello Sánchez, J. Cabello Sánchez, Z. Ercan, and S. Önal, “Memorandum on multiplicative bijections and order,” Semigroup Forum, 79, No. 1, 193–209 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    V. V. Chermnykh, Sheaf Representations of Semirings [in Russian], Candidate’s Dissertation in Physics and Mathematics, Moscow Ped. State Univ., Moscow (1993).Google Scholar
  12. 12.
    V. V. Chermnykh, “On completeness of sheaf representations of semirings,” Fundam. Prikl. Mat., 2, No. 1, 267–277 (1996).MathSciNetzbMATHGoogle Scholar
  13. 13.
    V. V. Chermnykh, Semirings [in Russian], Vyatka State Ped. Univ., Kirov (1997).Google Scholar
  14. 14.
    V. V. Chermnykh, “Semirings sections of the sheaves,” Vestn. Vyatsk. Gos. Guman. Univ., 13, 151–158 (2005).Google Scholar
  15. 15.
    V. V. Chermnykh, Functional Representations of Semirings and Semimodules [in Russian], Doctoral Dissertation in Physics and Mathematics, The Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg (2007).Google Scholar
  16. 16.
    V. V. Chermnykh, Functional Representations of Semirings [in Russian], Vyatka State Humanities Univ., Kirov (2010).Google Scholar
  17. 17.
    V. V. Chermnykh, “Functional representations of semirings,” Fundam. Prikl. Mat., 17, No. 3, 111–227 (2012).MathSciNetzbMATHGoogle Scholar
  18. 18.
    D. V. Chuprakov, “On kernels of semifields of continuous functions,” in: Proc. Int. Alg. Conf., Dedic. 100th Anniversary of A. G. Kurosh [in Russian], Moscow (2008), pp. 251–253.Google Scholar
  19. 19.
    D. V. Chuprakov, “On maximal congruences on semirings of continuous functions with idempotent addition,” Mat. Vestn. Pedvuz. Univ. Volgo-Vyatsk. Reg., 10, 99–110 (2008).Google Scholar
  20. 20.
    D. V. Chuprakov, “On retracts of lattices of congruences of semirings of continuous functions,” in: Proc. VI Youth School-Conf. “Lobachevsky Readings” [in Russian], Kazan (2008), pp. 241–243.Google Scholar
  21. 21.
    D. V. Chuprakov, “Complements of congruences in semirings of continuous functions,” Mat. Vestn. Pedvuz. Univ. Volgo-Vyatsk. Reg., 11, 122–127 (2009).Google Scholar
  22. 22.
    D. V. Chuprakov, Congruences on Semirings and Semifields of Continuous Numerical Functions [in Russian], Candidate’s Dissertation in Physics and Mathematics, Kazan State Univ., Kazan (2009).Google Scholar
  23. 23.
    D. V. Chuprakov, “Distributivity conditions for the congruence’s lattice of semirings of continuous functions,” Vestn. Udmurt. Univ. Mat. Mech. Comp. Nauki, 3, 128–134 (2009).CrossRefGoogle Scholar
  24. 24.
    B. J. Day, “Gelfand dualities over topological fields,” J. Aust. Math. Soc. Ser. A, 32, No. 2, 171–177 (1982).MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    R. Engelking, General Topology [Russian translation], Mir, Moscow (1986).Google Scholar
  26. 26.
    I. M. Gelfand and A. N. Kolmogorov, “On rings of continuous functions on topological spaces,” Dokl. Akad. Nauk SSSR, 22, No. 1, 11–15 (1939).zbMATHGoogle Scholar
  27. 27.
    L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, Preston (1960).Google Scholar
  28. 28.
    L. Gillman and M. Henriksen, “Concerning rings of continuous functions,” Trans. Am. Math. Soc., 77, No. 2, 340–362 (1954).MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    L. Gillman and M. Henriksen, “Rings of continuous functions in which every finitely generated ideal is principal,” Trans. Am. Math. Soc., 82, No. 2. 366–391 (1956).MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    L. Gillman, M. Henriksen, and M. Jerison, “On a theorem of Gelfand and Kolmogoroff concerning maximal ideals in rings of continuous functions,” Proc. Am. Math. Soc., 5, No. 3, 447–455 (1954).MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    J. S. Golan, Semirings and Their Applications, Kluwer Academic, Dordrecht (1999).Google Scholar
  32. 32.
    G. Grätzer, General Lattice Theory [Russian translation], Mir, Moscow (1982).Google Scholar
  33. 33.
    J. Gunawardena, ed., Idempotency, Cambridge Univ. Press, Cambridge (1998).Google Scholar
  34. 34.
    A. E. Guterman, Frobenius Endomorphisms of Matrix Spaces [in Russian], Doctoral Dissertation in Physics and Mathematics, MSU, Moscow (2008).Google Scholar
  35. 35.
    F. Hausdorff, Set Theory [Russian Translation], KomKniga, Moscow (2006).Google Scholar
  36. 36.
    M. Henriksen, Rings of Continuous Functions from an Algebraic Point of View. Ordered Algebraic Structures, Kluwer Academic, Dordrecht (1989).Google Scholar
  37. 37.
    M. Henriksen, “Rings of continuous functions in the 1950s,” in: Handbook of the History of General Topology, 1, 243–253 (1997).Google Scholar
  38. 38.
    E. Hewitt, “Rings of real-valued continuous functions. I,” Trans. Am. Math. Soc., 64, No. 1, 45–99 (1948).Google Scholar
  39. 39.
    D. Ipate and R. Lupu, “About rings of continuouse functions in the expanded field of numbers,” Bul. Acad. S, tiint e Repub. Mold. Mat., 1, No. 62, 47–54 (2010).zbMATHGoogle Scholar
  40. 40.
    I. Kaplansky, “Topological rings,” Am. Math. J., 69, No. 2, 153–183 (1947).MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    A. Ya. Khelemskii, Banach and Polynormed Algebras: General Theory, Representations, and Homology [in Russian], Nauka, Moscow, 1989.Google Scholar
  42. 42.
    A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis [in Russian], Nauka, Moscow (1989).Google Scholar
  43. 43.
    E. N. Lubyagina, Semirings of Continuous [0, 1]-Valued Functions [in Russian], Candidate’s Dissertation in Physics and Mathematics, The Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg (2012).Google Scholar
  44. 44.
    E. N. Lubyagina, “The partial rings of continuous functions,” Nauch.-Tekhn. Vestn. Povolzh., 3, 44–46 (2015).Google Scholar
  45. 45.
    J. Marovt, “Multiplicative bijections of C(X, I),” Proc. Am. Math. Soc., 134, No. 4, 1065–1075 (2005).MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    V. P. Maslov and V. N. Kolokoltsov, Idempotent Analysis and Its Application to Optimal Control [in Russian], Nauka, Moscow (1994).Google Scholar
  47. 47.
    A. N. Milgram, “Multiplicative semigroups of continuous functions,” Duke Math. J., 16, No. 2, 377–383 (1949).MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    J. Nagata, “On lattices of functions on topological spaces and of functions on uniform spaces,” Osaka Math. J., 1, No. 2, 166–181 (1949).MathSciNetzbMATHGoogle Scholar
  49. 49.
    M. A. Naimark, Normed Rings [in Russian], Nauka, Moscow (1968).Google Scholar
  50. 50.
    V. V. Pashenkov, “On dualities,” Dokl. Akad. Nauk SSSR, 222, No. 6, 1295–1298 (1975).MathSciNetGoogle Scholar
  51. 51.
    M. N. Podlevskikh, “Closed congruences on semirings of continuous functions,” Fundam. Prikl. Mat., 5, No. 3, 947–952 (1999).MathSciNetzbMATHGoogle Scholar
  52. 52.
    M. N. Podlevskikh, Semirings of Continuous Functions with Topology of Pointwise Convergence [in Russian], Candidate’s Dissertation in Physics and Mathematics, Moscow Ped. State Univ., Moscow (1999).Google Scholar
  53. 53.
    L. S. Pontryagin, Continuous Groups [in Russian], Nauka, Moscow (1984).Google Scholar
  54. 54.
    W. Rudin, Functional Analysis [Russian translation], Mir, Moscow (1975).Google Scholar
  55. 55.
    A. N. Semenov, “On subalgebras of semirings of continuous functions,” Mat. Vestn. Pedvuz. Volgo-Vyatsk. Reg., 1, 83–90 (1998).Google Scholar
  56. 56.
    A. N. Semenov, “On subalgebras of semirings of continuous functions,” in: Proc. Int. Kurosh Alg. Conf. [in Russian], Moscow (1998), pp. 208–209.Google Scholar
  57. 57.
    A. N. Semenov, “On lattice of congruences of semifields,” Vestn. Vyatsk. Gos. Guman. Univ., 9, 92–95 (2003).Google Scholar
  58. 58.
    I. A. Semenova, “Principal congruences on a semifield of continuous positive functions,” Vestn. Vyatsk. Gos. Ped. Univ. Ser. Yest. Nauk. Mat., Inform., Fiz., 1, 14–16 (1996).Google Scholar
  59. 59.
    I. A. Semenova, “Congruences on a semifield of continuous positive functions and his strongly convex multiplicative subgroups,” Vestn. Vyatsk. Gos. Ped. Univ. Ser. Yest. Nauk. Mat., Inform., Fiz., 3, 30–32 (1997).Google Scholar
  60. 60.
    I. A. Semenova, Congruences on Semirings of Continuous Functions [in Russian], Candidate’s Dissertation in Physics and Mathematics, Moscow Ped. State Univ., Moscow (1998).Google Scholar
  61. 61.
    I. A. Semenova, “The determination of Hewitt spaces X by lattice of congruences of semirings of continuous nonnegative functions on X,” Vestn. Vyatsk. Gos. Ped. Univ., 1, 20–23 (1999).Google Scholar
  62. 62.
    I. A. Semenova, “Maximal congruences on a semifield of continuous positive functions,” Fundam. Prikl. Mat., 8, No. 1, 305–310 (2000).MathSciNetzbMATHGoogle Scholar
  63. 63.
    N. V. Shalaginova, “Three sheaves for semirings of continuous functions,” in: Proc. VI Youth School-Conf. “Lobachevsky Readings–2010” [in Russian], Kazan (2010), pp. 367–372.Google Scholar
  64. 64.
    N. V. Shalaginova, “On semirings of germs of continuous nonnegative functions,” Nauch.-Tekhn. Vestn. Povolzh., 3, 40–43 (2011).Google Scholar
  65. 65.
    N. V. Shalaginova, “Maximal ideals of partial semirings of continuous [0,∞]-valued functions,” in: Proc. Youth Conf. “Actual Problems of Mathematics, Mechanics and Computer Science–2013” [in Russian], Perm (2013), p. 178.Google Scholar
  66. 66.
    N. V. Shalaginova, “On semirings of continuous functions with values in (0,∞],” in: Proc. XIV Sci. Youth School-Conf. “Lobachevsky Readings–2015” [in Russian], Kazan (2015), pp. 170–171.Google Scholar
  67. 67.
    N. V. Shalaginova and E. M. Vechtomov, “Congruences on the semiring (0,∞]n,” in: Proc. All-Russ. Conf. “Fundamental and Applied Problems of Mechanics, Mathematics and Computer Science [in Russian], Perm (2015), pp. 35–39.Google Scholar
  68. 68.
    N. V. Shalaginova and E. M. Vechtomov, “To the theory of partial semirings of continuous [0,∞]-valued functions,” Lobachevskii J. Math., 36, No. 4, 341–348 (2015).MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    D. V. Shirokov, “Distributivity conditions for the lattice of congruences of the semifield of continuous positive functions,” Vestn. Vyatsk. Gos. Guman. Univ., 8, 137–140 (2003).Google Scholar
  70. 70.
    D. V. Shirokov, “Baer injectivity for semirings of continuous nonnegative functions,” Mat. Vestn. Pedvuz. Univ. Volgo-Vyatsk. Reg., 7, 94–104 (2005).Google Scholar
  71. 71.
    D. V. Shirokov, Ideals in Semirings of Continuous Functions [in Russian], Candidate’s Dissertation in Physics and Mathematics, Moscow Ped. State Univ., Moscow (2005).Google Scholar
  72. 72.
    D. V. Shirokov, “Properties of ideals of semirings of continuous nonnegative functions,” in: Proc. Int. Alg. Conf. Dedic. to 100th Anniversary of P. G. Kontorovich and 70th Anniversary of L. N. Shevrin [in Russian], Ekaterinburg (2005), pp. 118–120.Google Scholar
  73. 73.
    D. V. Shirokov, “Semirings of continuous nonnegative functions: flat ideals and semiring’s characterizations of topological properties,” Vestn. Vyatsk. Gos. Guman. Univ. Inform. Mat. Yazyk, 13, 166–170 (2005).Google Scholar
  74. 74.
    D. V. Shirokov, “The ideals of semirings of continuous nonnegative functions: purity and projectivity,” Vestn. Vyatsk. Gos. Guman. Univ., 12, 201–210 (2005).Google Scholar
  75. 75.
    Ya. N. Shitov, Linear Algebra over Semirings [in Russian], Doctoral Dissertation in Physics and Mathematics, MSU, Moscow (2015).Google Scholar
  76. 76.
    V. V. Sidorov, Isomorphisms of Lattices of Subalgebras of Semirings of Continuous Nonnegative Functions [in Russian], Candidate’s Dissertation in Physics and Mathematics, Kazan Federal University, Kazan (2011).Google Scholar
  77. 77.
    V. V. Sidorov, “Structure of lattice of isomorphisms of semirings generated by a one nonnegative function,” Vestn. Syktyvkar. Univ. Ser. 1. Mat. Mekh. Inform., 13, 11–36 (2011).Google Scholar
  78. 78.
    V. V. Sidorov, “The automorphism group of the lattice of all subalgebras of the semiring of polynomials over the semifield of nonnegative real numbers,” Izv. Vyssh. Uchebn. Zaved., Mat., 4, 104–107 (2011).MathSciNetGoogle Scholar
  79. 79.
    V. V. Sidorov, “Automorphisms of the lattice of all subalgebras of the semiring of polynomials in one variable,” Fundam. Prikl. Mat., 17, No. 3, 85–96 (2012).zbMATHGoogle Scholar
  80. 80.
    V. V. Sidorov, “Isomorphisms of lattices of subalgebras of semirings of continuous nonnegative functions with the max-plus,” Fundam. Prikl. Mat., 19, No. 6, 153–189 (2014).Google Scholar
  81. 81.
    V. V. Sidorov, “The determination of compact spaces by lattice of subalgebras of semifields U(X),” Fundam. Issled., 6, No. 6, 1191–1194 (2014).Google Scholar
  82. 82.
    V. V. Sidorov, “Isomorphisms of semifields of continuous positive functions with the max-plus,” in: Proc. Int. Conf. “Algebra, Number Theory and Discrete Geometry: Contemporary Problems and Applications” [in Russian], Tula (2015), pp. 184–185.Google Scholar
  83. 83.
    W. Slowikowski and A. Zawadowsci, “A generalization of maximal ideals method of Stone and Gelfand,” Fund. Math., 42, No. 2, 215–231 (1955).MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    M. N. Smirnova (Podlevskikh), “Closed ideals in semirings of continuous functions with topology of pointwise convergence,” Vestn. Vyatsk. Gos. Ped. Univ. Ser. Yest. Nauk. Mat., Inform., Fiz., 1, 16–18 (1996).Google Scholar
  85. 85.
    M. N. Smirnova (Podlevskikh), “Duality theorems for semirings of continuous functions with topology of pointwise convergence,” in: Proc. Int. Conf. Women Math. [in Russian], Volgograd (1996), pp. 115–116.Google Scholar
  86. 86.
    M. N. Smirnova (Podlevskikh), “On closed subalgebras in semirings of continuous functions,” in: Proc. Int. Conf. Women Math. [in Russian], Rostov-on-Don (1997), pp. 64–65.Google Scholar
  87. 87.
    M. H. Stone, “The theory of representations for Boolean algebras,” Trans. Am. Math. Soc., 40, No. 1, 3–111 (1936).MathSciNetGoogle Scholar
  88. 88.
    M. H. Stone, “Applications of the theory of Boolean rings to general topology,” Trans. Am. Math. Soc., 41, No. 3, 375–481 (1937).MathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    H. S. Vandiver, “Note on a simple type of algebra in which cancellation law of addition does not hold,” Bull. Am. Math. Soc., 40, 914–920 (1934).MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    A. V. Varankin, “Congruence on semirings of continuous nonnegative functions, generated filters,” Mat. Vestn. Pedvuz. Univ. Volgo-Vyatsk. Reg., 2, 3–10 (2000).Google Scholar
  91. 91.
    V. I. Varankina, “Maximal ideals in semirings of continuous functions,” Fundam. Prikl. Mat., 1, No. 4, 923–937 (1995).MathSciNetzbMATHGoogle Scholar
  92. 92.
    V. I. Varankina, Maximal Ideals and Divisibility in Semirings of Continuous Functions [in Russian], Candidate’s Dissertation in Physics and Mathematics, Moscow Ped. State Univ., Moscow (1996).Google Scholar
  93. 93.
    V. I. Varankina and E. M. Vechtomov, “The scientific algebraic school,” Gertsenka: Vyatsk. Zap., 15, 199–207, (2009).Google Scholar
  94. 94.
    V. I. Varankina, E. M. Vechtomov, and I. A. Semenova, “Semirings of continuous nonnegative functions: divisibility, ideals, congruences,” Fundam. Prikl. Mat., 4, No. 2, 493–510 (1998).MathSciNetzbMATHGoogle Scholar
  95. 95.
    V. I. Varankina, E. M. Vechtomov, and M. N. Smirnova, “Spaces of prime ideals of semirings of continuous functions,” Vestn. Vyatsk. Gos. Ped. Univ. Ser. Yest. Nauk. Mat., Inform., Fiz., 3, 4–7 (1997).Google Scholar
  96. 96.
    E. M. Vechtomov, “Rings and sheaves,” J. Math. Sci., 74, No. 1, 749–798 (1995).MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    E. M. Vechtomov, “Rings of continuous functions with values in a topological division ring,” J. Math. Sci., 78, No. 6, 702–753 (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    E. M. Vechtomov, The Determination of Topological Spaces by Semigroups of Continuous Partial Functions, Deposited at VINITI No. 256-B88 (1988).Google Scholar
  99. 99.
    E. M. Vechtomov, “On semigroups of continuous partial functions of topological spaces,” Usp. Mat. Nauk, 46, No. 4, 143–144 (1990).MathSciNetzbMATHGoogle Scholar
  100. 100.
    E. M. Vechtomov, “Questions on the determination of topological spaces by algebraic systems of continuous functions,” Itogi Nauki Tekh. Ser. Algebra. Topol. Geom., 28, 3–46 (1990).MathSciNetzbMATHGoogle Scholar
  101. 101.
    E. M. Vechtomov, “Rings of continuous functions. Algebraic aspects,” Itogi Nauki Tekh. Ser. Algebra. Topol. Geom., 29, 119–191 (1991).MathSciNetzbMATHGoogle Scholar
  102. 102.
    E. M. Vechtomov, “On the Gelfand–Kolmogorov theorem on maximal ideals of rings of continuous functions,” Usp. Mat. Nauk, 47, No. 5, 171–172 (1992).MathSciNetzbMATHGoogle Scholar
  103. 103.
    E. M. Vechtomov, Rings of Continuous Functions on Topological Spaces. Selected Topics [in Russian], Moscow Pedagogical State Univ., Moscow (1992).Google Scholar
  104. 104.
    E. M. Vechtomov, “T 0-spaces and topological lattices of continuous {0, 1}-valued functions,” Zam. Tartusk. Univ., 940, 101–106 (1992).MathSciNetzbMATHGoogle Scholar
  105. 105.
    E. M. Vechtomov, Functional Representations of Rings [in Russian], Moscow Pedagogical State Univ., Moscow (1993).Google Scholar
  106. 106.
    E. M. Vechtomov, Rings of Continuous Functions with Values in Topological Division Ring [in Russian], Doctoral Dissertation in Physics and Mathematics, Moscow (1993).Google Scholar
  107. 107.
    E. M. Vechtomov, “Distributive lattices which have chain functional representation,” Fundam. Prikl. Mat., 2, No. 1, 93–102 (1996).MathSciNetzbMATHGoogle Scholar
  108. 108.
    E. M. Vechtomov, “Lattice of subalgebras of the ring of continuous functions and Hewitt spaces,” Mat. Zametki, 62, No. 5, 687–693 (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  109. 109.
    E. M. Vechtomov, “One class of maximal subalgebras of semirings of continuous nonnegative functions,” Vestn. Vyatsk. Gos. Ped. Univ. Ser. Yest. Nauk. Mat., Inform., Fiz., 3, 7–10 (1997).MathSciNetGoogle Scholar
  110. 110.
    E. M. Vechtomov, “Functional characterization of Stone lattices,” Vestn. Vyatsk. Gos. Ped. Univ., 2, 9–11 (1999).Google Scholar
  111. 111.
    E. M. Vechtomov, “On subalgebras of ring of continuous functions with values in a discrete division ring,” Vestn. Vyatsk. Gos. Ped. Univ., 1, 19–20 (1999).Google Scholar
  112. 112.
    E. M. Vechtomov, Introduction to Semirings [in Russian], Vyatka State Pedagogical Univ., Kirov (2000).Google Scholar
  113. 113.
    E. M. Vechtomov, “Semirings of continuous maps,” Vestn. Vyatsk. Gos. Guman. Univ., 10, 57–64 (2004).Google Scholar
  114. 114.
    E. M. Vechtomov, “Structure of semifields,” Vestn. Syktyvkar. Univ. Ser. 1. Mat. Mekh. Inform., 10, 3–42 (2009).Google Scholar
  115. 115.
    E. M. Vechtomov, “On the theory of semirings of continuous functions,” in: Proc. Int. Conf. “Mathematics. Education” [in Russian], Cheboksary (2013), pp. 19–34.Google Scholar
  116. 116.
    E. M. Vechtomov, “Semirings and sheaves. Review of the results of research for the period 2008–2012,” Vestn. Vyatsk. Gos. Guman. Univ., 1, 185–193 (2013).Google Scholar
  117. 117.
    E. M. Vechtomov, “Functional algebra: semirings of continuous functions,” Tr. Mat. Centra im. N. I. Lobachevskogo, 52, 38–40 (2015).Google Scholar
  118. 118.
    E. M. Vechtomov and A. V. Cheraneva, “Semifields and their properties,” Fundam. Prikl. Mat., 14, No. 5, 3–54 (2008).zbMATHGoogle Scholar
  119. 119.
    E. M. Vechtomov and D. V. Chuprakov, “Congruences on semirings of continuous functions and F-spaces,” Vestn. Syktyvkar. Univ. Ser. 1. Mat. Mekh. Inform., 8, 15–26 (2008).Google Scholar
  120. 120.
    E. M. Vechtomov and D. V. Chuprakov, “The principal kernels of semifields of continuous positive functions,” Fundam. Prikl. Mat., 14, No. 4, 87–107 (2008).zbMATHGoogle Scholar
  121. 121.
    E. M. Vechtomov and D. V. Chuprakov, “Extension of congruences on semirings of continuous functions,” Mat. Zametki, 85, No. 6, 803–816 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  122. 122.
    E. M. Vechtomov and D. V. Chuprakov, “Pseudocomplements in the lattice of congruences of semirings of continuous functions,” Vestn. Syktyvkar. Univ. Ser. 1. Mat. Mekh. Inform., 9, 3–17 (2009).MathSciNetGoogle Scholar
  123. 123.
    E. M. Vechtomov and E. N. Lubyagina, “About prime ideals of semirings of continuous functions with values in the unit segment,” Vestn. Udmurt. Univ. Mat. Mekh. Komp. Nauki, 2, 12–18 (2011).CrossRefGoogle Scholar
  124. 124.
    E. M. Vechtomov and E. N. Lubyagina, “Lattices of continuous functions with values in the unit segment,” Vestn. Syktyvkar. Univ. Ser. 1. Mat. Mekh. Inform., 14, 3–20 (2011).Google Scholar
  125. 125.
    E. M. Vechtomov and E. N. Lubyagina “About semirings of sc-functions,” Vestn. Syktyvkar. Univ. Ser. 1. Mat. Mekh. Inform., 15, 73–82 (2012).Google Scholar
  126. 126.
    E. M. Vechtomov and E. N. Lubyagina, “The determinability of compacts by lattices of ideals and congruences of semirings of continuous [0, 1]-valued functions on them,” Izv. Vyssh. Uchebn. Zaved., Mat., 1, 87–91 (2012).zbMATHGoogle Scholar
  127. 127.
    E. M. Vechtomov and E. N. Lubyagina, “The semiring of continuous [0, 1]-valued functions,” Fundam. Prikl. Mat., 17, No. 4, 53–82 (2012).zbMATHGoogle Scholar
  128. 128.
    E. M. Vechtomov and E. N. Lubyagina, “Closed ideals and closed congruences of semirings of continuous [0, 1]-valued functions with topology of pointwise convergence,” Tr. Inst. Mat. Mekh. UrO RAN, 19, No. 3, 83–93 (2013).MathSciNetGoogle Scholar
  129. 129.
    E. M. Vechtomov and E. N. Lubyagina, “Semirings of partial functions,” in: Proc. Int. Conf. “Algebra, Number Theory and Discrete Geometry: Contemporary Problems and Applications” [in Russian], Tula (2015), pp. 148–150.Google Scholar
  130. 130.
    E. M. Vechtomov, E. N. Lubyagina, and V. V. Chermnykh, Elements of the Theory of Semirings [in Russian], Vyatka State Humanities Univ., Kirov (2012).Google Scholar
  131. 131.
    E. M. Vechtomov, A. V. Mikhalev, and V. V. Chermnykh, “Abelian regular positive semirings,” Tr. Semin. Petrovskogo, 20, 282–309 (1997).Google Scholar
  132. 132.
    E. M. Vechtomov and N. V. Shalaginova, “About ideals of the partial semirings of continuous [0,∞]-valued functions,” in: Proc. Int. Conf. “Mathematics in the Modern World” [in Russian], Vologda (2013), pp. 12–14.Google Scholar
  133. 133.
    E. M. Vechtomov and N. V. Shalaginova, “About partial semirings of continuous [0,∞]-valued functions,” in: Int. Sci. Youth School-Conf. “Contemporary Problems in Mathematics and Its Applications” [in Russian], Ekaterinburg (2014), pp. 16–19.Google Scholar
  134. 134.
    E. M. Vechtomov and N. V. Shalaginova, “Ideals in partial semirings of continuous [0,∞]-valued functions,” in: Proc. Int. Conf. “Algebra and Number Theory: Contemporary Problems and Applications” [in Russian], Tula (2014), pp. 158–161.Google Scholar
  135. 135.
    E. M. Vechtomov and N. V. Shalaginova, “Prime ideals of the partial semirings of continuous [0,∞]-valued functions,” Vestn. Perm. Univ. Mat. Mekh. Inform., 1, 5–12 (2014).Google Scholar
  136. 136.
    E. M. Vechtomov and N. V. Shalaginova, “To the theory of partial semirings of continuous [0,∞]-valued functions,” in: Proc. Conf. “Algebra and Mathematical Logic: Theory and Applications,” [in Russian], Kazan (2014), pp. 156–157.Google Scholar
  137. 137.
    E. M. Vechtomov and N. V. Shalaginova, “About the ideals in semirings of continuous (0,∞]-valued functions,” in: Proc. Int. Conf. “Algebra, Number Theory and Discrete Geometry: Contemporary Problems and Applications” [in Russian], Tula (2015), pp. 153–155.Google Scholar
  138. 138.
    E. M. Vechtomov and V. V. Sidorov, “Isomorphisms of lattices of subalgebras of semirings of continuous nonnegative functions,” Fundam. Prikl. Mat., 16, No. 3, 63–103 (2010).Google Scholar
  139. 139.
    E. M. Vechtomov and V. V. Sidorov, “The determination of semirings of continuous functions by lattice their subalgebras,” Vestn. Syktyvkar. Univ. Ser. 1. Mat. Mekh. Inform., 11, 112–125 (2010).Google Scholar
  140. 140.
    E. M. Vechtomov and V. V. Sidorov, “Definability of Hewitt spaces by the lattices of subalgebras of semifields of continuous positive functions with max-plus,” Tr. Inst. Mat. Mekh. UrO RAN, 21, No. 3, 78–88 (2015).Google Scholar
  141. 141.
    E. M. Vechtomov, V. V. Sidorov, and D. V. Chuprakov, Semirings of Continuous Functions [in Russian], Vyatka State Humanities Univ., Kirov (2011).Google Scholar
  142. 142.
    E. M. Vechtomov and M. N. Smirnova (Podlevskikh), “A duality for topological semirings of continuous functions,” Usp. Mat. Nauk, 51, No. 3, 187–188 (1996).Google Scholar
  143. 143.
    E. M. Vechtomov and O. V. Starostina, “Structure of Abelian regular positive semirings,” Usp. Mat. Nauk, 62, No. 1, 199–200 (2007).MathSciNetzbMATHCrossRefGoogle Scholar
  144. 144.
    E. M. Vechtomov and O. V. Starostina, “Generalized Abelian regular positive semirings,” Vestn. Syktyvkar. Univ. Ser. 1. Mat. Mekh. Inform., 7, 3–16 (2007).MathSciNetzbMATHGoogle Scholar
  145. 145.
    E. M. Vechtomov and V. I. Varankina, “Development a functional algebra in the Vyatka State Humanities University,” Vestn. Vyatsk. Gos. Guman. Univ., 4, 136–144 (2015).Google Scholar
  146. 146.
    V. K. Zakharov, A. V. Mikhalev, and A. A. Seredinskii, “Algebraic description of rings of continuous functions,” Usp. Mat. Nauk, 56, No. 1, (2001).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • E. M. Vechtomov
    • 1
    Email author
  • A. V. Mikhalev
    • 2
  • V. V. Sidorov
    • 1
  1. 1.Vyatka State UniversityVyatkaRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations