Journal of Mathematical Sciences

, Volume 243, Issue 6, pp 872–879 | Cite as

On Products of Weierstrass Sigma Functions

  • A. A. IllarionovEmail author
We prove the following result. Let f : ℂ ℂ be an even entire function. Assume that there exist 𝛼j, βj : ℂ with
$$ f\left(x+y\right)f\left(x-y\right)=\sum \limits_{\mathrm{j}=1}^4{\alpha}_j(x){\beta}_j(y),\kern0.5em x,y\in \mathbb{C}. $$

Then f(z) = σL(z) · σΛ(z) · eAz2+C where L and Λ are lattices in ℂ, σL is the Weierstrass sigma function associated with the lattice L, and A,C ∈ ℂ.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Bonk, “The addition theorem of Weierstrass’s sigma function,” Math. Ann., 298, No. 1, 591–610 (1994).MathSciNetCrossRefGoogle Scholar
  2. 2.
    V. A. Bykovskii, “Hyperquasipolynomials and their applications,” Funct. Anal. Appl., 50, No. 3, 193–203 (2016).MathSciNetCrossRefGoogle Scholar
  3. 3.
    R. Rochberg and L. Rubel, “A functional equation,” Indiana Univ. Math. J., 41, No. 2, 363–376 (1992).MathSciNetCrossRefGoogle Scholar
  4. 4.
    A. A. Illarionov, “Solution of functional equations related to elliptic functions,” Proc. Steklov Inst. Math., 299, 96–108 (2017).MathSciNetCrossRefGoogle Scholar
  5. 5.
    V. M. Bukhshtaber and D. V. Leikin, “Trilinear functional equations,” Russian Math. Surveys, 60, No. 2, 341–343 (2005).MathSciNetCrossRefGoogle Scholar
  6. 6.
    P. Sinopoulos, “Generalized sine equation. I,” Aequationes Math., 48, 171–193 (1994).MathSciNetCrossRefGoogle Scholar
  7. 7.
    M. Bonk, “The characterization of theta functions by functional equations,” Abh. Math. Sem. Univ. Hamburg, 65, 29–55 (1995).MathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Bonk, “The addition formula for theta function,” Aequationes Math., 53, No. 1–2, 54–72 (1997).MathSciNetCrossRefGoogle Scholar
  9. 9.
    A. Jarai and W. Sander, “On the characterization of Weierstrass’s sigma function,” in: Functional Equations – Results and Advances, Adv. Math., 3, Kluwer Acad. Publ., Dordrecht (2002), pp. 29–79.Google Scholar
  10. 10.
    V. A. Bykovskii, “On the rank of odd hyper-quasi-polynomials,” Dokl. Math., 94, No. 2, 527–528 (2016).MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. A. Illarionov, “Functional equations and theWeierstrass sigma-functions,” Funct. Anal. Appl., 50, No. 4, 281–290 (2016).MathSciNetCrossRefGoogle Scholar
  12. 12.
    A. A. Illarionov and M. A. Romanov, “On the connection between hyperelliptic systems of sequences and functions,” Dal’nevost. Mat. Zh., 17, No. 2, 210–220 (2017).MathSciNetzbMATHGoogle Scholar
  13. 13.
    D. Mumford, Lectures on Theta Functions [in Russian], Moscow (1988).Google Scholar
  14. 14.
    S. Stoilov, The Theory of Functions of a Complex Variable [in Russian], Vol. 1, Moscow (1962).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Khabarovsk Division of the Institute for Applied Mathematics and Pacific National UniversityKhabarovskRussia

Personalised recommendations