Journal of Mathematical Sciences

, Volume 243, Issue 6, pp 862–866 | Cite as

On the Spectra of Hyperbolic Surfaces Without Thin Handles

  • M. B. DubashinskiyEmail author

We obtain a sharp lower bound on the eigenvalues of the Laplace–Beltrami operator on a hyperbolic surface with injectivity radius bounded from below.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Buser, Geometry and Spectra of Compact Riemann Surfaces, Birkhäuser (2010).Google Scholar
  2. 2.
    P. Buser, “Cubic graphs and the first eigenvalue of a Riemann surface,” Math. Z., 162, 87–99 (1978).MathSciNetCrossRefGoogle Scholar
  3. 3.
    J.-P. Otal and E. Rosas, “Pour toute surface hyperbolique de genre g, λ 2g−2> 1/4,” Duke Math. J., 150, No. 1, 101–115 (2009).MathSciNetCrossRefGoogle Scholar
  4. 4.
    J. Cheeger, “A lower bound for the smallest eigenvalue of the Laplacian,” in: Problems in Analysis, a Symposium in Honor of S. Bochner, Princeton Univ. Press, Princeton (1970), pp. 195–199.CrossRefGoogle Scholar
  5. 5.
    S.-T. Yau, “Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold,” Ann. Sci. Ecole Norm. Sup., 8, No. 4, 487–507 (1975).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chebyshev LaboratorySt.Petersburg State UniversitySt.PetersburgRussia

Personalised recommendations