Journal of Mathematical Sciences

, Volume 243, Issue 6, pp 841–843 | Cite as

Local Boundary Smoothness of an Analytic Function and its Modulus in Several Dimensions: An Announcement

  • I. VasilyevEmail author

The drop of the smoothness of an analytic function compared to the smoothness of its modulus is discussed for the unit ball of ℂn. The paper is devoted to local aspects of the problem.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Abakumov, O. El-Fallah, K. Kellay, and T. Ransford, “Cyclicity in the harmonic Dirichlet space,” in: Harmonic Analysis, Function Theory, Operator Theory and Applications, Theta, Bucharest (2017), pp. 1–10.Google Scholar
  2. 2.
    J. E. Brennan, “Approximation in the mean by polynomials on non-Carathéodory domains,” Ark. Mat., 15, No. 1–2, 117–168 (1977).MathSciNetCrossRefGoogle Scholar
  3. 3.
    J. Mashreghi and M. Shabankhah, “Zero sets and uniqueness sets with one cluster point for the Dirichlet space,” J. Math. Anal. Appl., 357, No. 2, 498–503 (2009).MathSciNetCrossRefGoogle Scholar
  4. 4.
    B. A. Taylor and D. L. Williams, “Zeros of Lipschitz functions analytic in the unit disc,” Michigan Math. J., 18, No. 2, 129–139 (1971).MathSciNetCrossRefGoogle Scholar
  5. 5.
    J. Bruna and J. Ortega, “Closed finitely generated ideals in algebras of holomorphic functions and smooth to the boundary in strictly pseudoconvex domains,” Math. Ann., 268, 137–158 (1984).MathSciNetCrossRefGoogle Scholar
  6. 6.
    A. V. Vasin, S. V. Kislyakov, and A. N. Medvedev, “Local smoothness of an analytic function compared to the smoothness of its modulus,” Algebra Analiz, 25, No. 3, 52–85 (2013).MathSciNetCrossRefGoogle Scholar
  7. 7.
    V. P. Havin and F. A. Shamoyan, “Analytic functions with the boundary values having Lipschitz module,” Zap. Nauchn. Semin. LOMI, 19, 237–239 (1970).Google Scholar
  8. 8.
    N. A. Shirokov, “Smoothness of a holomorphic function in a ball and smoothness of its modulus on the sphere,” Zap. Nauchn. Semin. POMI, 447, 123–128 (2016).Google Scholar
  9. 9.
    N. A. Shirokov, Analytic Functions Smooth up to the Boundary, Springer-Verlag, Berlin (1988).Google Scholar
  10. 10.
    W. Rudin, Function Theory in the Unit Ball ofn, Springer-Verlag, New York (1980).Google Scholar
  11. 11.
    R. A. DeVore and R. C. Sharpley, Maximal Functions Measuring Smoothness, Mem.Amer. Math. Soc., No. 293, Amer. Math. Soc., Providence, Rhode Island (1984).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.St.Petersburg Department of Steklov Institute of MathematicsSt.PetersburgRussia

Personalised recommendations