Advertisement

Journal of Mathematical Sciences

, Volume 243, Issue 4, pp 612–623 | Cite as

New Supercharacter Theory for Sylow Subgroups in Orthogonal and Symplectic Groups

  • A. N. PanovEmail author
Article
  • 7 Downloads

Using a new approach, the supercharacter theory is constructed for the Sylow subgroups in orthogonal and symplectic groups.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Diaconis and I. M. Isaacs, “Supercharacters and superclasses for algebra groups,” Trans. Amer. Math. Soc., 360, 2359–2392 (2008).MathSciNetCrossRefGoogle Scholar
  2. 2.
    C. A. M. André, “Basic Sums of Coadjoint Orbits of the Unitriangular group,” J. Algebra, 176, 959–1000 (1995).MathSciNetCrossRefGoogle Scholar
  3. 3.
    C. A. M. André, “Basic character table of the Unitriangular group,” J. Algebra, 241, 437–471 (2001).MathSciNetCrossRefGoogle Scholar
  4. 4.
    C. A. M. André, “Hecke algebra for the basic representations of the unitriangular group,” Proc. Amer. Math. Soc., 132, No. 4, 987–996 (2003).CrossRefGoogle Scholar
  5. 5.
    C. A. M. André and A. M. Neto, “Supercharacters of the finite the Sylow subgroup of the finite symplectic and orthogonal groups,” Pacific J. Math., 239, 201–230 (2009).MathSciNetCrossRefGoogle Scholar
  6. 6.
    C. A. M. André and A. M. Neto, “A supercharacter theory for the Sylow p-subgroups of the finite symplectic and orthogonal groups,” J. Algebra, 322, 1273–1294 (2009).MathSciNetCrossRefGoogle Scholar
  7. 7.
    C. A. M. André, J. P. Freitas, and A. M. Neto, “A supercharacter theory for involutivealgebra groups,” J. Algebra, 430, 159–190 (2015).MathSciNetCrossRefGoogle Scholar
  8. 8.
    S. Andrews, “Supercharacters of unipotent groups defined by involutions,” J. Algebra, 425, 1–30 (2015).MathSciNetCrossRefGoogle Scholar
  9. 9.
    A. N. Panov, “Supercharacter theory for groups of invertible elements of reduced algebras,” St. Petersburg Math. J., 27 1035–1047 (2016).MathSciNetCrossRefGoogle Scholar
  10. 10.
    A. N. Panov, “Supercharacters of unipotent and solvable grpups,” in: Itogi Nauki Tekh., 136, (2017) pp. 31–55.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Samara State UniversitySamaraRussia

Personalised recommendations