Advertisement

Journal of Mathematical Sciences

, Volume 243, Issue 4, pp 515–526 | Cite as

Towards the Reverse Decomposition of Unipotents

  • N. A. VavilovEmail author
Article
  • 6 Downloads

Decomposition of unipotents gives short polynomial expressions of the conjugates of elementary generators as products of elementaries. It turns out that with some minor twist the decomposition of unipotents can be read backwards to give very short polynomial expressions of the elementary generators themselves in terms of elementary conjugates of an arbitrary matrix and its inverse. For absolute elementary subgroups of classical groups this was recently observed by Raimund Preusser. I discuss various generalizations of these results for exceptional groups, specifically those of types E6 and E7, and also mention further possible generalizations and applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Abe, “Chevalley groups over commutative rings,” in: Proc. Conf. Radical Theory, Sendai, (1988), Uchida Rokakuho Publ. Comp., Tokyo (1989), pp. 1–23.Google Scholar
  2. 2.
    E. Abe, “Normal subgroups of Chevalley groups over commutative rings,” Contemp. Math., 83, 1–17 (1989).MathSciNetzbMATHGoogle Scholar
  3. 3.
    E. Abe and K. Suzuki, “On normal subgroups of Chevalley groups over commutative rings,” Tˆohoku Math. J., 28, No. 1, 185–198 (1976).MathSciNetzbMATHGoogle Scholar
  4. 4.
    M. M. Atamanova and A. Yu. Luzgarev, “Cubic forms on adjoint representations of exceptional groups,” J. Math. Sci., 222, No. 4, 370–379 (2017).MathSciNetzbMATHGoogle Scholar
  5. 5.
    A. Bak, “The stable structure of quadratic modules,” Ph. D. Thesis, Columbia University (1969).Google Scholar
  6. 6.
    A. Bak and N. Vavilov, “Structure of hyperbolic unitary groups. I. Elementary subgroups,” Algebra Colloq., 7, No. 2, 159–196 (2000).MathSciNetzbMATHGoogle Scholar
  7. 7.
    H. Bass, “K-theory and stable algebra,” Inst. Hautes Études Sci. Publ. Math., No. 22, 5–60 (1964).MathSciNetzbMATHGoogle Scholar
  8. 8.
    H. Bass, “Unitary algebraic K-theory,” Lect. Notes Math., 343, 57–265 (1973).MathSciNetzbMATHGoogle Scholar
  9. 9.
    Z. I. Borewicz and N. A. Vavilov, “The distribution of subgroups in the full linear group over a commutative ring,” Proc. Steklov Inst. Math., 3, 27–46 (1985).Google Scholar
  10. 10.
    N. Bourbaki, Groupes et Algébres de Lie. Chapitres 4–6, Hermann, Paris (1968).Google Scholar
  11. 11.
    J. L. Brenner, “The linear homogeneous group. III,” Ann. Math., 71, 210–223 (1960).MathSciNetzbMATHGoogle Scholar
  12. 12.
    D. L. Costa and G. E. Keller, “Radix redux: normal subgroups of symplectic group,” J. Reine Angew. Math., 427, No. 1, 51–105 (1992).MathSciNetzbMATHGoogle Scholar
  13. 13.
    D. L. Costa and G. E. Keller, “On the normal subgroups of G 2(A),” Trans. Amer. Math. Soc., 351, No. 12, 5051–5088 (1999).MathSciNetzbMATHGoogle Scholar
  14. 14.
    I. Z. Golubchik, “On the general linear group over an associative ring,” Usp. Mat. Nauk, 28, No. 3, 179–180 (1973).Google Scholar
  15. 15.
    I. Z. Golubchik, “On the normal subgroups of orthogonal group over an associative ring with involution,” Usp. Mat. Nauk, 30, No. 6, 165 (1975).Google Scholar
  16. 16.
    I. Z. Golubchik, “The normal subgroups of linear and unitary groups over rings,” Ph. D. Thesis, Moscow State University (1981).Google Scholar
  17. 17.
    I. Z. Golubchik, “On the normal subgroups of the linear and unitary groups over associative rings,” in: Spaces over Algebras and Some Problems in the Theory of Nets, Ufa (1985), pp. 122–142.Google Scholar
  18. 18.
    A. J. Hahn and O. T. O’Meara, The Classical Groups and K-theory, Springer, Berlin (1989).zbMATHGoogle Scholar
  19. 19.
    A. Yu. Luzgarev, “Equations determining the orbit of the highest weight vector in the adjoint representation,” arXiv:1401.0849v1 [math.AG] (2014).Google Scholar
  20. 20.
    R. Hazrat, V. Petrov, and N. Vavilov, “Relative subgroups in Chevalley groups,” J. KTheory, 5, No. 3, 603–618 (2010).MathSciNetzbMATHGoogle Scholar
  21. 21.
    R. Hazrat, A. Stepanov, N. Vavilov, and Z. Zhang, “Commutator width in Chevalley groups,” Note di Matematica, 33, No. 1, 139–170 (2013).MathSciNetzbMATHGoogle Scholar
  22. 22.
    R. Hazrat and N. Vavilov, “Bak’s work on the K-theory of rings,” J. K-Theory, 4, No. 1, 1–65 (2009).MathSciNetzbMATHGoogle Scholar
  23. 23.
    V. I. Kopeiko, “Stabilization of symplectic groups over a ring of polynomials,” Math. USSR Sb., 34, No. 5, 655–669 (1978).MathSciNetGoogle Scholar
  24. 24.
    V. A. Petrov, “Decomposition of transvections: An algebro-geometric approach,” St.Petersburg J. Math., 28, No. 1, 109–114 (2017).MathSciNetzbMATHGoogle Scholar
  25. 25.
    R. Preusser, “Structure of hyperbolic unitary groups II. Classification of E-normal subgroups,” Algebra Colloq., 24, No. 2, 195–232 (2017).MathSciNetzbMATHGoogle Scholar
  26. 26.
    R. Preusser, “Sandwich classification for GLn(R), O 2n(R) and U 2n(R, Λ) revisited,” J. Group Theory, 21, No. 1, 21–44 (2018).MathSciNetGoogle Scholar
  27. 27.
    R. Preusser, “Sandwich classification for O 2n+1(R) and U 2n+1(R, Δ) revisited,” J. Group Theory, 21, No. 4, 539–571 (2018).MathSciNetzbMATHGoogle Scholar
  28. 28.
    A. Stavrova and A. Stepanov, “Normal structure of isotropic reductive groups over rings,” arXiv:1801.08748v1 [math.GR] (2018).Google Scholar
  29. 29.
    A. Stepanov, “Stability conditions in the theory of linear groups over rings,” Ph. D. Thesis, Leningrad State Univ. (1987).Google Scholar
  30. 30.
    A. Stepanov, “Structure of Chevalley groups over rings via universal localization,” J. Algebra, 450, 522–548 (2016).MathSciNetzbMATHGoogle Scholar
  31. 31.
    A. V. Stepanov, “A new look at the decomposition of unipotents and the normal structure of Chevalley groups,” St. Petersburg Math. J., 28, No. 3, 411–419 (2017).MathSciNetzbMATHGoogle Scholar
  32. 32.
    A. Stepanov and N. Vavilov, “Decomposition of transvections: a theme with variations,” K-Theory19, No. 2, 109–153 (2000).MathSciNetzbMATHGoogle Scholar
  33. 33.
    A. A. Suslin, “The structure of the special linear group over polynomial rings,” Math. USSR Izv., 11, No. 2, 235–253 (1977).zbMATHGoogle Scholar
  34. 34.
    A. A. Suslin and V. I. Kopeiko, “Quadratic modules and the orthogonal group over polynomial rings,” J. Soviet Math., 20, No. 6, 2665–2691 (1982).zbMATHGoogle Scholar
  35. 35.
    G. Taddei, “Normalité des groupes élémentaires dans les groupes de Chevalley sur un anneau,” Contemp. Math., 55, 693–710 (1986).MathSciNetzbMATHGoogle Scholar
  36. 36.
    L. N. Vaserstein, “On the normal subgroups of the GLn of a ring,” Lect. Notes Math., 854, 454–465 (1981).Google Scholar
  37. 37.
    L. N. Vaserstein, “On normal subgroups of Chevalley groups over commutative rings,” Tôhoku Math. J., 36, No. 5, 219–230 (1986).MathSciNetzbMATHGoogle Scholar
  38. 38.
    L. N. Vaserstein, “The subnormal structure of general linear groups over rings,” Math. Proc. Cambridge Phil. Soc., 108, No. 2, 219–229 (1990).MathSciNetzbMATHGoogle Scholar
  39. 39.
    L. Vaserstein and H. You, “Normal subgroups of classical groups over rings,” J. Pure Appl. Algebra, 105, 93–106 (1995).MathSciNetzbMATHGoogle Scholar
  40. 40.
    N. A. Vavilov, “Subgroups of split classical groups,” Habilitationsschrift, Leningrad State Univ. (1987).Google Scholar
  41. 41.
    N. Vavilov, “Structure of Chevalley groups over commutative rings,” in: Nonassociative Algebras and Related Topics, World Sci. Publ., London et al. (1991), pp. 219–335.Google Scholar
  42. 42.
    N. Vavilov, “A third look at weight diagrams,” Rend. Sem. Mat. Univ. Padova, 104, 201–250 (2000).MathSciNetzbMATHGoogle Scholar
  43. 43.
    N. A. Vavilov, “Numerology of square equations,” St.Petersburg Math. J., 20, No. 5, 687–707 (2009).MathSciNetzbMATHGoogle Scholar
  44. 44.
    N. A. Vavilov, “An A3-proof of structure theorems for Chevalley groups of types E6 and E7. II. Fundamental lemma,” St.Petersburg Math. J., 23, No. 6, 921–942 (2012).MathSciNetGoogle Scholar
  45. 45.
    N. A. Vavilov, “Decomposition of unipotents for E6 and E7: 25 years after,” J. Math. Sci., 219, No. 3, 355–369 (2016).MathSciNetzbMATHGoogle Scholar
  46. 46.
    N. A. Vavilov and M. R. Gavrilovich, “A2-proof of structure theorems for Chevalley groups of types E6 and E7,” St.Petersburg Math. J., 16, No. 4, 649–672 (2005).MathSciNetzbMATHGoogle Scholar
  47. 47.
    N. A. Vavilov, M. R. Gavrilovich, and S. I. Nikolenko, “Structure of Chevalley groups: the proof from the Book,” J. Math. Sci., 140, No. 5, 626–645 (2007).MathSciNetzbMATHGoogle Scholar
  48. 48.
    N. A. Vavilov and A. Yu. Luzgarev, “Normalizer of the Chevalley group of type E6,” St.Petersburg Math. J., 19, No. 5, 699–718 (2008).MathSciNetzbMATHGoogle Scholar
  49. 49.
    N. A. Vavilov and A. Yu. Luzgarev, “Normalizer of the Chevalley group of type E7,” St.Petersburg Math. J., 27, No. 6, 899–921 (2015).zbMATHGoogle Scholar
  50. 50.
    N. A. Vavilov and S. I. Nikolenko, “A2-proof of structure theorems for the Chevalley group of type F4,” St.Petersburg Math. J., 20, No. 4, 527–551 (2009).MathSciNetzbMATHGoogle Scholar
  51. 51.
    N. A. Vavilov and E. B. Plotkin, “Net subgroups of Chevalley groups,” J. Sov. Math., 19, No. 1, 1000–1006 (1982).zbMATHGoogle Scholar
  52. 52.
    N. A. Vavilov and E. B. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations,” Acta Appl. Math., 45, 73–113 (1996).MathSciNetzbMATHGoogle Scholar
  53. 53.
    N. A. Vavilov, E. B. Plotkin, and A. V. Stepanov, “Calculations in Chevalley groups over commutative rings,” Soviet Math. Dokl., 40, No. 1, 145–147 (1990).MathSciNetzbMATHGoogle Scholar
  54. 54.
    N. A. Vavilov and A. V. Stepanov, “Linear groups over general rings I. Generalities,” J. Math. Sci., 1–107 (2012).Google Scholar
  55. 55.
    J. S. Wilson, “The normal and subnormal structure of general linear groups,” Proc. Camb. Philos. Soc., 71, 163–177 (1972).MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations