Advertisement

Journal of Mathematical Sciences

, Volume 243, Issue 2, pp 338–346 | Cite as

Scenarios of Transitions to Hyperchaos in Nonideal Oscillating Systems

  • A. Yu. ShvetsEmail author
  • V. A. Sirenko
Article
  • 5 Downloads

We consider a class of nonideal oscillating (by Sommerfeld and Kononenko) dynamical systems and establish the existence of two types of hyperchaotic attractors in these systems. The scenarios of transitions from regular to chaotic ones attractors and the scenarios of transitions between chaotic attractors of different types are described.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. J. Feigenbaum, “Quantitative universality for a class of nonlinear transformations,” J. Stat. Phys.,19, No. 1, 25–52 (1978).MathSciNetCrossRefGoogle Scholar
  2. 2.
    M. J. Feigenbaum, “The universal metric properties of nonlinear transformations,” J. Stat. Phys.,21, No. 6, 669–706 (1979).MathSciNetCrossRefGoogle Scholar
  3. 3.
    P. Manneville and Y. Pomeau, “Different ways to turbulence in dissipative dynamical systems,” Phys. D,1, No. 2, 219–226 (1980).MathSciNetCrossRefGoogle Scholar
  4. 4.
    Y. Pomeau and P. Manneville, “Intermittent transition to turbulence in dissipative dynamical systems,” Comm. Math. Phys.,74, No. 2, 189–197 (1980).MathSciNetCrossRefGoogle Scholar
  5. 5.
    S. P. Kuznetsov, Dynamical Chaos [in Russian], Fizmatlit, Moscow (2006).Google Scholar
  6. 6.
    T. S. Krasnopol’skaya and A. Yu. Shvets, “Chaotic surface waves in limited power-supply cylindrical tank vibrations,” J. Fluids Struct.,8, No. 1, 1–18 (1994).CrossRefGoogle Scholar
  7. 7.
    T. S. Krasnopol’skaya and A. Yu. Shvets, “Dynamical chaos for a limited power supply for fluid oscillations in cylindrical tanks,” J. Sound Vibrat.,322, No. 3, 532–553 (2009).CrossRefGoogle Scholar
  8. 8.
    A. Yu. Shvets and V. A. Sirenko, “Specific features of transition to deterministic chaos in a nonideal hydrodynamic ‘tank filled with liquid – electric motor’ system,” Dinam. Sist.,1(29), No. 1, 113–131 (2011).Google Scholar
  9. 9.
    A. Yu. Shvets and V. A. Sirenko, “Unity and variety of the scenarios of transitions to chaos in the case of vibration of liquid in cylindrical tanks,” in: Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences “Mathematical Problems of Mechanics and Computational Mathematics,”11, No. 4 (2014), pp. 386–398.Google Scholar
  10. 10.
    A. Yu. Shvets and V. O. Sirenko, “New ways of transitions to deterministic chaos in nonideal oscillating systems,” Res. Bull. Nat. Tech. Univ. Ukraine “Kyiv Polytechnic Institute,”99, No. 1, 45–51 (2015).Google Scholar
  11. 11.
    V. O. Kononenko, Oscillating Systems with Bounded Excitations [in Russian], Nauka, Moscow (1964).Google Scholar
  12. 12.
    I. A. Lukovskii, Mathematical Models of Nonlinear Dynamics of Solid Bodies Filled with Liquids [in Russian], Naukova Dumka, Kiev (2010).Google Scholar
  13. 13.
    B. I. Rabinovich, Introduction to the Dynamics of Carrier Rockets of Spacecrafts [in Russian], Mashinostroenie, Moscow (1983).Google Scholar
  14. 14.
    R. A. Ibrahim, Liquid Sloshing Dynamics: Theory and Applications, Cambridge Univ. Press, Cambridge (2005).Google Scholar
  15. 15.
    A. Yu. Shvets, “Deterministic chaos of a spherical pendulum under bounded excitation” Ukr. Mat. Zh.,59, No. 4, 534–548 (2007); English translation:Ukr. Math. J.,59, No. 4, 602–614 (2007).Google Scholar
  16. 16.
    T. S. Krasnopol’skaya and A. Yu. Shvets, “Properties of chaotic fluid oscillations in cylindrical basins,” Internat. Appl. Mech.,28, No. 6, 386–394 (1992).MathSciNetCrossRefGoogle Scholar
  17. 17.
    A. M. Samoilenko and N. I. Ronto, Numerical-Analytic Methods of Investigating Periodic Solutions, Mir, Moscow (1979).Google Scholar
  18. 18.
    T. S. Krasnopolskaya and A. Yu. Shvets, Regular and Chaotic Dynamics of Systems with Limited Excitation [in Russian], R&C Dynamics, Moscow (2008).Google Scholar
  19. 19.
    A. M. Samoilenko, Elements of the Mathematical Theory of Multifrequency Oscillations. Invariant Tori [in Russian], Nauka, Moscow (1987).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.“Sikorsky Kyiv Polytechnic Institute” Ukrainian National Technical UniversityKyivUkraine

Personalised recommendations