Advertisement

Journal of Mathematical Sciences

, Volume 243, Issue 2, pp 326–337 | Cite as

Periodic Matrix Boundary-Value Problems with Concentrated Delay

  • S. M. ChuikoEmail author
  • D. V. Sysoev
Article
  • 4 Downloads

We establish necessary and sufficient conditions for the existence of solutions of a linear periodic matrix boundary-value problem for a system of differential equations with concentrated delay in the critical case. We deduce conditions for the existence of the best solution (in a sense of the least-squares method) of the linear periodic matrix boundary-value problem for a system of differential equations with concentrated delay and find this solution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Boichuk and A. M. Samoilenko, Generalized Inverse Operators and Fredholm Boundary-Value Problems, De Gruyter, Berlin (2016).Google Scholar
  2. 2.
    A. D. Myshkis, Linear Differential Equations with Delay [in Russian], Gostekhizdat, Moscow (1951).Google Scholar
  3. 3.
    Yu. A. Mitropol’skii and D. I. Martynyuk, Lectures on the Theory of Oscillations in Systems with Delay [in Russian], Kiev University, Kiev (1969).Google Scholar
  4. 4.
    V. P. Rubanik, Oscillations of Quasilinear Systems with Delay [in Russian], Nauka, Moscow (1969).Google Scholar
  5. 5.
    A. A. Boichuk and S. M. Chuiko, “Periodic solutions of nonlinear autonomous systems with delay in critical cases,” Dokl. Akad. Nauk. Ukr., No. 9, 9–13 (1991).Google Scholar
  6. 6.
    R. Bellman, Introduction to Matrix Analysis, McGraw-Hill Book Company, New York (1960).Google Scholar
  7. 7.
    A. A. Boichuk and S. A. Krivosheya, “Critical periodic boundary-value problem for the matrix Riccati equation,” Differents. Uravn.,37, No. 4, 439–445 (2001).Google Scholar
  8. 8.
    S. M. Chuiko, “Green operator of the linear Noetherian boundary-value problem for matrix differential equation,” Dinam. Sist.,4(32), No. 1–2, 101–107 (2014).Google Scholar
  9. 9.
    V. V. Voevodin and Yu. A. Kuznetsov, Matrices and Calculations [in Russian], Nauka, Moscow (1984).Google Scholar
  10. 10.
    S. M. Chuiko, “Generalized Green operator of Noetherian boundary-value problem for matrix differential equation,” Russian Math. (Izv. VUZ),60, No. 8, 64–73 (2016).MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. A. Boichuk and V. F. Zhuravlev, “Construction of the solutions of boundary-value problems for differential systems with delay in critical cases,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 6, 3–7 (1990).Google Scholar
  12. 12.
    S. M. Chuiko and A. S. Chuiko, “On approximate solution of periodic boundary-value problems with delay by the least-squares method in the critical case,” Nelin. Kolyv., 14, No. 3, 419–432 (2011); English translation:Nonlin. Oscillat.,14, No. 3, 445–460 (2012).MathSciNetCrossRefGoogle Scholar
  13. 13.
    N. I. Akhiezer, Lectures on Approximation Theory [in Russian], Nauka, Moscow (1965).Google Scholar
  14. 14.
    S. M. Chuiko, “On approximate solution of boundary-value problems by the least-squares method,” Nelin. Kolyv.,11, No. 4, 554–573 (2008); English translation:Nonlin. Oscillat.,11, No. 4, 585–604 (2008).MathSciNetCrossRefGoogle Scholar
  15. 15.
    S. L. Campbell, Singular Systems of Differential Equations, Pitman Adv. Publ. Progr., San Francisco–London–Melbourne (1980).Google Scholar
  16. 16.
    A. M. Samoilenko, M. I. Shkil’, and V. P. Yakovets’, Linear Systems of Differential Equations with Degenerations [in Ukrainian], Vyshcha Shkola, Kyiv (2000).Google Scholar
  17. 17.
    L. A. Vlasenko and N. A. Perestyuk, “On the solvability of impulsive differential-algebraic equations,” Ukr. Mat. Zh.,57, No. 4, 458–468 (2005); English translation:Ukr. Math. J.,57, No. 4, 551–564 (2005).MathSciNetCrossRefGoogle Scholar
  18. 18.
    A. A. Boichuk, A. A. Pokutnyi, and V. F. Chistyakov, “Application of perturbation theory to the solvability analysis of differential algebraic equations,” Comput. Math. Math. Phys.,53, No. 6, 777–788 (2013).MathSciNetCrossRefGoogle Scholar
  19. 19.
    S. M. Chuiko, “Generalized matrix differential-algebraic equation,” Ukr. Mat. Visn.,12, No. 1, 11–26 (2015).MathSciNetzbMATHGoogle Scholar
  20. 20.
    N. V. Azbelev, V. P. Maksimov, and L. F. Rakhmatullina, Introduction to the Theory of Functional-Differential Equations [in Russian], Moscow, Nauka (1991).Google Scholar
  21. 21.
    S. M. Chuiko, “Green’s operator of a generalized matrix linear differential-algebraic boundary-value problem,” Sib. Mat. Zh.,56, No. 4, 942–951 (2015).MathSciNetCrossRefGoogle Scholar
  22. 22.
    E. V. Panasenko and O. O. Pokutnyi, “Boundary-value problems for the Lyapunov equation in Banach spaces,” Nelin. Kolyv.,19, No. 2, 240–246 (2016); English translation:J. Math. Sci.,223, No. 3, 298–304 (2017).Google Scholar
  23. 23.
    S. M. Chuiko, “Linear boundary-value problem for a matrix differential equation,” Differents. Uravn.,52, No. 11, 1578–1579 (2016).Google Scholar
  24. 24.
    S. M. Chuiko, “On the solvability of a matrix boundary-value problem,” J. Math. Sci.,232, No. 5, 794–798 (2018).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Donbas State Pedagogic UniversitySlavyanskUkraine

Personalised recommendations