Advertisement

Journal of Mathematical Sciences

, Volume 243, Issue 2, pp 287–312 | Cite as

Mathematical Model of the Solar System with Regard for the Velocity of Gravitation

  • V. Yu. SlyusarchukEmail author
Article
  • 5 Downloads

We construct a mathematical model of the Solar system taking into account the finite velocity of gravitation. We also correct Kepler’s laws and present the properties of the studied system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. Myshkis, Linear Differential Equations with Retarded Argument [in Russian], Gostekhizdat, Moscow (1951).Google Scholar
  2. 2.
    A. D. Myshkis and L. É É. El’sgol’ts, “State and problems of the theory of differential equations with deviating argument,” Usp. Mat. Nauk,22, No. 2, 21–57 (1967).Google Scholar
  3. 3.
    A. D. Myshkis, “Some problems of the theory of differential equations with deviating argument,” Usp. Mat. Nauk,32, No. 2, 173–202 (1977).MathSciNetGoogle Scholar
  4. 4.
    E. Pinney, Ordinary Difference-Differential Equations, University of California, Berkeley (1958).Google Scholar
  5. 5.
    R. Bellman and K. L. Cooke, Differential-Difference Equations, Academic Press, New York (1963).Google Scholar
  6. 6.
    V. P. Rubanik, Oscillations of Quasilinear Systems with Delay [in Russian], Nauka, Moscow (1971).Google Scholar
  7. 7.
    L. É. Él’sgol’ts and S. B. Norkin, Introduction to the Theory of Differential Equations with Deviating Argument [in Russian], Nauka, Moscow (1971).Google Scholar
  8. 8.
    J. Hale, Theory of Functional Differential Equations, Springer, New York (1977).CrossRefGoogle Scholar
  9. 9.
    E. F. Tsar’kov, Random Perturbations of Functional-Differential Equations [in Russian], Zinatne, Riga (1989).Google Scholar
  10. 10.
    N. V. Azbelev, V. P. Maksimov, and L. F. Rakhmatullina, Introduction to the Theory of Functional-Differential Equations [in Russian], Moscow, Nauka (1991).Google Scholar
  11. 11.
    V. Yu. Slyusarchuk, Absolute Stability of Dynamical Systems with Aftereffect [in Ukrainian], Rivne State University of Water Management and Utilization of Natural Resources , Rivne (2003).Google Scholar
  12. 12.
    E. B. Fomalont and S. V. Kopeikin, “The measurement of the light deflection from Jupiter: experimental results,” Astrophys. J.,598, 704–711 (2003).CrossRefGoogle Scholar
  13. 13.
    S. M. Kopeikin and E. Fomalont, “Fundamental limit of the velocity of gravitation and its measurement,” Zemlya Vselennaya, No. 3 (2004).Google Scholar
  14. 14.
    F. R. Moulton, An Introduction to Celestial Mechanics, MacMillian, New York (1914).Google Scholar
  15. 15.
    A. Poincaré, Lectures on Celestial Mechanics [Russian translation], Nauka, Moscow (1965).Google Scholar
  16. 16.
    J. Chazy, La Théorie de la Relativité et la Mécanique Céleste, Vol. 1, Gauthier-Villars, Paris (1928).Google Scholar
  17. 17.
    G. N. Duboshin, Celestial Mechanics. Analytic and Qualitative Methods [in Russian], Nauka, Moscow (1978).Google Scholar
  18. 18.
    V. I. Arnold, “Small denominators and the problems of stability of motion in classical and celestial mechanics,” Usp. Mat. Nauk,18, No. 6, 91–192 (1963).MathSciNetGoogle Scholar
  19. 19.
    V. A. Brumberg, Relativistic Celestial Mechanics [in Russian[, Nauka, Moscow (1972).Google Scholar
  20. 20.
    A. P. Markeev, Libration Points in Celestial Mechanics and Cosmodynamics [in Russian], Nauka, Moscow (1978).Google Scholar
  21. 21.
    V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics [in Russian], URSS, Moscow (2002).Google Scholar
  22. 22.
    Ya. B. Zel’dovich and I. D. Novikov, Gravitation Theory and Evolution of Stars [in Russian], Nauka, Moscow (1971).Google Scholar
  23. 23.
    A. P. Ryabushko, Motion of Bodies in the General Relativity Theory [in Russian], Vyséishaya Shkola, Minsk (1979).Google Scholar
  24. 24.
    S. Kopeikin, M. Efroimsky, and G. Kaplan, Relativistic Celestial Mechanics of the Solar System, Wiley (2011).Google Scholar
  25. 25.
    V. P. Tsesevich, What and How to Observe in the Sky [in Russian], Nauka, Moscow (1984).Google Scholar
  26. 26.
    G. M. Fikhtengol’ts, A Course of Differential and Integral Calculus [in Russian], Vol. 1, Nauka, Moscow (1966).Google Scholar
  27. 27.
    V. A. Zorich, Mathematical Analysis [in Russian], Vol. 2, Nauka, Moscow (1984).Google Scholar
  28. 28.
    H. B. Dwight, Tables of Integrals and Other Mathematical Data [Russian translation], Nauka, Moscow (1973).Google Scholar
  29. 29.
    O. V. Golubeva, Theoretical Mechanics [in Russian], Vysshaya Shkola, Moscow (1968).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National University of Water Management and Utilization of Natural ResourcesRivneUkraine

Personalised recommendations