Journal of Mathematical Sciences

, Volume 243, Issue 2, pp 192–203 | Cite as

Approximation of Solutions to the Optimal Control Problems for Systems with Maximum

  • S. DashkovskiyEmail author
  • O. Kichmarenko
  • K. Sapozhnikova

We consider optimal control problems for nonlinear systems whose dynamics depends on the maximum of the control function and the maximum of the state over a certain time interval of prehistory. We are interested in the approximation of solutions for this kind of problems. An averaging method is developed for this purpose.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. N. Bogolyubov and Yu. A. Mitropolski, Asymptotic Methods in the Theory of Non-Linear Oscillations, Gordon & Breach, New York (1961).Google Scholar
  2. 2.
    N. M. Krylov and N. N. Bogolyubov, Introduction to Non-Linear Mechanics, Princeton Univ. Press, Princeton (1947).Google Scholar
  3. 3.
    J. Hale, Introduction to the Functional Differential Equations, Springer, New York (1966).Google Scholar
  4. 4.
    B. Lehman and S. Weibel, “Fundamental theorems of averaging for functional differential equations,” J. Different. Equat.,152, 160–190 (1999).MathSciNetCrossRefGoogle Scholar
  5. 5.
    N. N. Moiseev, Asymptotic Methods of Nonlinear Mechanics, Nauka, Moscow (1981).Google Scholar
  6. 6.
    V. Mogilova, O. Stanzhytskiy, and A. Tkachuk, “Application of the averaging method to some optimal control problem,” Funct. Different. Equat.,20, No. 3, 227–237 (1981).MathSciNetGoogle Scholar
  7. 7.
    V. A. Plotnikov and O. D. Kichmarenko, “Averaging of controlled equations with Hukuhara derivative,” Nonlin. Oscillat.,9, No. 3, 365–374 (2006).MathSciNetCrossRefGoogle Scholar
  8. 8.
    N. Kitanov, “Methods of averaging for optimal control problems with impulsive effects,” Int. J. Pure Appl. Math.,71, No. 4, 573–589 (2011).MathSciNetzbMATHGoogle Scholar
  9. 9.
    R. Gama and G. Smirnov, “Stability and optimality of solutions to differential inclusions via averaging method,” Set-Valued Var. Anal.,2, 349–374 (2014).MathSciNetCrossRefGoogle Scholar
  10. 10.
    E. P. Popov, Automatic Regulation and Control, 2nd ed., Nauka, Moscow (1966).Google Scholar
  11. 11.
    K. P. Hadeler, Delay Equations in Biology, Springer, New York (1979).CrossRefGoogle Scholar
  12. 12.
    D. D. Bainov and S. Hristova, Differential Equations with Maxima, CRC Press Taylor & Francis, New York (2011).Google Scholar
  13. 13.
    A. Ahmed and E. I. Verriest, “Nonlinear systems evolving with state suprema as multi-mode multi-dimensional systems analysis and observation,” in: Proc. 5th IFAC Conf. on Analysis and Design of Hybrid System (2015), pp. 242–247.Google Scholar
  14. 14.
    S. Dashkovskiy, S. Hristova, O. Kichmarenko, and K. Sapozhnikova, “Behavior of the solution to the systems with maximum,” IFACPapersOnLine,50, No. 1, 12925–12930 (2017).Google Scholar
  15. 15.
    V. Azhmyakov, A. Ahmed, and E. I. Verriest, “On the optimal control of systems evolving with state suprema,” in: Proc. IEEE 55th Conf. Decision and Control (CDC) (2016), pp. 3617–3623.Google Scholar
  16. 16.
    H. K. Khalil, Nonlinear Systems, Prentice Hall, Upper Saddle River (2002).Google Scholar
  17. 17.
    R. J. Aumann, “Integrals of set-valued functions,” J. Math. Anal. Appl.,12, 1–12 (1965).MathSciNetCrossRefGoogle Scholar
  18. 18.
    A. A. Lyapunov, “On completely additive vector functions,” Izv. Akad. Nauk USSR.,4, No. 6, 465–478 (1940).Google Scholar
  19. 19.
    V. A. Plotnikov and O. D. Kichmarenko, “A note on the averaging method for differential equation with maxima,” Iran. J. Optim., 132–140 (2010).Google Scholar
  20. 20.
    E. B. Lee and L. Markus, Foundations of optimal control theory, Krieger Publ., Malabar (FL) (1986).Google Scholar
  21. 21.
    V. A. Plotnikov, Averaging Method in Control Problems, Lybid, Kiev (1992).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. Dashkovskiy
    • 1
    Email author
  • O. Kichmarenko
    • 2
  • K. Sapozhnikova
    • 3
  1. 1.University of WürzburgWürzburgGermany
  2. 2.Mechnikov Odessa National University, Institute of Mathematics, Economics, and MechanicsOdessaUkraine
  3. 3.University of WürzburgWürzburgGermany

Personalised recommendations