Advertisement

About One Extremal Problem for the Projections of Points on a Unit Circle

  • Andrey L. TargonskiiEmail author
Article

Abstract

Sharp estimates of a product of inner radii for pairwise disjoint domains are obtained. In particular, the extremal problem in the case of any finite number of free poles at the points on rays is solved.

Keywords

Inner radius of a domain quadratic differential piecewise separating transformation Green function radial systems of points logarithmic capacity variational formula 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Lavrent’ev, “On the theory of conformal mappings,” Trudy Fiz.-Mat. Inst. AN SSSR, 5, 159–245 (1934).Google Scholar
  2. 2.
    G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Amer. Math. Soc., Providence, RI (1969).CrossRefzbMATHGoogle Scholar
  3. 3.
    G. P. Bakhtina Variational Methods and Quadratic Differentials in Problems for Disjoint Domains [in Russian], PhD thesis, Kiev (1975).Google Scholar
  4. 4.
    A. K. Bakhtin, G. P. Bakhtina, and Yu. B. Zelinskii Topological-Algebraic Structures and Geometric Methods in Complex Analysis [in Russian], Institute of Mathematics of the NAS of Ukraine, Kiev (2008).Google Scholar
  5. 5.
    V. N. Dubinin, “Separating transformation of domains and problems of extremal division,” Zap. Nauchn. Sem. LOMI RAN, 168, 48–66 (1988).Google Scholar
  6. 6.
    V. N. Dubinin, “Symmetrization method in geometric function theory of complex variables,” Russian Math. Surveys, 1, No. 1, 1–79 (1994).CrossRefzbMATHGoogle Scholar
  7. 7.
    A. K. Bakhtin, “Inequalities for the inner radii of nonoverlapping domains and open sets,” Ukr. Math. J., 61, No. 5, 716–733 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    A. K. Bakhtin and A. L. Targonskii, “Extremal problems and quadratic differential,” Nonlin. Oscillat., 8, No. 3, 296–301 (2005).MathSciNetCrossRefGoogle Scholar
  9. 9.
    A. L. Targonskii, “Extremal problems of partially nonoverlapping domains on a Riemann sphere,” Dop. NAN Ukr., No. 9, 31–36 (2008).MathSciNetGoogle Scholar
  10. 10.
    A. Targonskii, “Extremal problems on the generalized (n; d)-equiangular system of points,” An. St. Univ. Ovidius Constanta, 22, No. 2, 239–251 (2014).MathSciNetzbMATHGoogle Scholar
  11. 11.
    A. Targonskii, “Extremal problem (2n; 2m-1)-system points on the rays,” An. St. Univ. Ovidius Constanta, 24, No. 2, 283–299 (2016).MathSciNetzbMATHGoogle Scholar
  12. 12.
    A. L. Targonskii, “Extremal problems for partially non-overlapping domains on equiangular systems of points,” Bull. Soc. Sci. Lett. Lodz, 63, No. 1, 57–63 (2013).MathSciNetzbMATHGoogle Scholar
  13. 13.
    A. Targonskii and I. Targonskaya, “On the one extremal problem on the Riemann sphere,” Int. J. of Adv. Res. Math., 4, 1–7 (2016).CrossRefzbMATHGoogle Scholar
  14. 14.
    A. K. Bakhtin and A. L. Targonskii, “Generalized (n, d)-ray systems of points and inequalities for nonoverlapping domains and open sets,” Ukr. Math. J., 63 (2011), No. 7, 999–1012.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    A. K. Bakhtin and A. L. Targonskii, “Some extremal problems in the theory of nonoverlapping domains with free poles on rays,” Ukr. Math. J., 58 (2006), No. 12, 1950–1954.MathSciNetCrossRefGoogle Scholar
  16. 16.
    V. N. Dubinin, “Asymptotic representation of the modulus of a degenerating condenser and some its applications,” Zap. Nauch. Sem. Peterburg. Otd. Mat. Inst., 237, 56–73 (1997).Google Scholar
  17. 17.
    V. N. Dubinin, Capacities of Condensers and Symmetrization in Geometric Function Theory of Complex Variables [in Russian], Dal’nayka, Vladivostok (2009).Google Scholar
  18. 18.
    W. K. Hayman, Multivalent Functions, Cambridge Univ., Cambridge (1958).zbMATHGoogle Scholar
  19. 19.
    J. A. Jenkins, Univalent Functions and Conformal Mappings, Springer, Berlin (1958).CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Zhytomyr State University, Department of MathematicsZhytomyrUkraine

Personalised recommendations