Advertisement

On the local behavior of a class of inverse mappings

  • Evgeny A. Sevost’yanovEmail author
  • Sergei A. Skvortsov
Article

Abstract

We study the families of mappings such that the inverse ones satisfy an inequality of the Poletskii type in the given domain. It is proved that those families are equicontinuous at the inner points, if the initial and mapped domains are bounded, and the majorant responsible for a distortion of the modulus is integrable. But if the initial domain is locally connected on its boundary, and if the boundary of the mapped domain is weakly flat, then the corresponding families of mappings are equicontinuous at the inner and boundary points.

Keywords

Inverse mappings equicontinuity mappings with bounded finite distortion moduli capacities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Math. 229, Springer, Berlin, 1971.Google Scholar
  2. 2.
    O. Martio, S. Rickman, and J. Väisälä, “Distortion and singularities of quasiregular mappings,” Ann. Acad. Sci. Fenn. Ser. A1, 465, 1–13 (1970).MathSciNetzbMATHGoogle Scholar
  3. 3.
    V. Ryazanov, U. Srebro, and E. Yakubov, “Finite mean oscillation and the Beltrami equation,” Israel Math. J., 153, 247–266 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    R. Näkki and B. Palka, “Uniform equicontinuity of quasiconformal mappings,” Proc. Amer. Math. Soc., 37, No. 2, 427–433 (1973).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    R. Näkki and B. Palka, “Boundary regularity and the uniform convergence of quasiconformal mappings,” Comment. Math. Helvetici, 54, 458–476 (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    V. Ya. Gutlyanskii, V. I. Ryazanov, and E. Yakubov, “The Beltrami equations and prime ends,” J. of Math. Sci., 210, No. 1, 22–51 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    V. Ya. Gutlyanskiĭ, O. Martio, V. I. Ryazanov, and M. Vuorinen, “On convergence theorems for space quasiregular mappings,” Forum Math., 10, 353–375 (1998).MathSciNetzbMATHGoogle Scholar
  8. 8.
    V. Ya. Gutlyanskiĭ, O. Martio, V. I. Ryazanov, and M. Vuorinen, “On local injectivity and asymptotic linearity of quasiregular mappings,” Studia Math., 128, No. 3, 243–271 (1998).MathSciNetzbMATHGoogle Scholar
  9. 9.
    O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, “On Q-homeomorphisms,” Ann. Acad. Sci. Fenn. Ser. A1, 30, No. 1, 49–69 (2005).zbMATHGoogle Scholar
  10. 10.
    O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, “Mappings with finite length distortion,” J. d’Anal. Math., 93, 215–236 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    E. A. Sevost’yanov, “Equicontinuity of homeomorphisms with unbounded characteristic,” Siberian Adv. in Math., 23, No. 2, 106–122 (2013).MathSciNetCrossRefGoogle Scholar
  12. 12.
    E. A. Sevost’yanov and S. A. Skvortsov, “On the convergence of mappings in metric spaces under direct and inverse modular conditions,” Ukr. Mat. Zh., 70, No. 7, 952–967 (2018).Google Scholar
  13. 13.
    O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in Modern Mapping Theory, Springer Science + Business Media, New York, 2009.zbMATHGoogle Scholar
  14. 14.
    W. Hurewicz and H. Wallman, Dimension Theory, Princeton Univ. Press, Princeton, 1948.zbMATHGoogle Scholar
  15. 15.
    L. V. Keldysh, “Topological embeddings in the Euclidean space,” Trudy MIAN SSSR, 81, 3–184 (1966).Google Scholar
  16. 16.
    K. Kuratowski, Topology, Academic Press, New York, 1968, Vol. 2.Google Scholar
  17. 17.
    J. Herron and P. Koskela, “Quasiextremal distance domains and conformal mappings onto circle domains,” Compl. Var. Theor. Appl., 15, 167–179 (1990).MathSciNetzbMATHGoogle Scholar
  18. 18.
    M. Vuorinen, “On the existence of angular limits of n-dimensional quasiconformal mappings,” Ark. Mat., 18, 157–180 (1980).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    E. Sevost’yanov and S. Skvortsov, “On behavior of homeomorphisms with inverse modulus conditions,” www.arxiv.org , arXiv:1801.01808.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Evgeny A. Sevost’yanov
    • 1
    • 2
    Email author
  • Sergei A. Skvortsov
    • 1
  1. 1.I. Franko Zhytomyr State UniversityZhytomyrUkraine
  2. 2.Institute of Applied Mathematics and Mechanics of the NAS of UkraineSlavyanskUkraine

Personalised recommendations