Advertisement

The Existence of Root Subgroup Translated by a Given Element into its Opposite

  • I. M. PevznerEmail author
Article

Let Φ be a simply laced root system, K an algebraically closed field, and G = Gad(Φ,K) the adjoint group of type Φ over K. Then for every nontrivial element gG there exists a root element x of the Lie algebra of G such that x and gx are opposite.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Borel, “Properties and linear representations of Chevalley groups,” in: Seminar on Algebraic Groups [in Russian], Mir, Moscow (1973), pp. 9–59.Google Scholar
  2. 2.
    N. Bourbaki, Lie Groups and Algebras. Chaps. IV–VI [in Russian], Mir, Moscow (1972).Google Scholar
  3. 3.
    N. Bourbaki, Lie Groups and Algebras. Chaps. VII–VIII [in Russian], Mir, Moscow (1978).Google Scholar
  4. 4.
    A. Cohen, A. Steinbach, R. Ushirobira, and D. Wales, “Lie algebras generated by extremal elements,” J. Algebra, 236, No. 1, 122–154 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    J. Dieudonné, “Sur les générateurs des groupes classiques,” Summa Brasil. Math., 3, 149–179 (1955).MathSciNetzbMATHGoogle Scholar
  6. 6.
    J. Humphreys, Linear Algebraic Groups [in Russian], Nauka, Moscow (1980).Google Scholar
  7. 7.
    J. Humphreys, Introduction to the Theory of Lie Algebras and Their Representations [in Russian], MCCME, Moscow (2003).Google Scholar
  8. 8.
    A. Yu. Luzgarev and I. M. Pevzner, “Private life of GL(5,ℤ),” Zap. Nauchn. Semin. POMI, 305, 153–163 (2003).Google Scholar
  9. 9.
    O. T. O’Meara, “Lectures on linear groups,” in: Automorphisms of Classical Groups [in Russian], Mir, Moscow (1976), pp. 57–167.Google Scholar
  10. 10.
    O. T. O’Meara, Lectures on Symplectic Groups [in Russian], Mir, Moscow (1979).Google Scholar
  11. 11.
    I. M. Pevzner, “Geometry of root elements in groups of type E6,” Algebra Analiz, 23, No. 3, 261–309 (2011).Google Scholar
  12. 12.
    I. M. Pevzner, “Width of groups of type E6 with respect to root elements. I,”Algebra Analiz, 23, No. 5, 155–198 (2011).Google Scholar
  13. 13.
    I. M. Pevzner, “Width of groups of type E6 with respect to root elements. II,” Zap. Nauchn. Semin. POMI, 386, 242–264 (2011).Google Scholar
  14. 14.
    I. M. Pevzner, “The width of the group GL(6,K) with respect to a set of quasiroot elements,” Zap. Nauchn. Semin. POMI, 423, 183–204 (2014).Google Scholar
  15. 15.
    I. M. Pevzner, “Width of extraspecial unipotent radical with respect to root elements,” Zap. Nauchn. Semin. POMI, 435, 168–177 (2015).Google Scholar
  16. 16.
    T. A. Springer, “Linear algebraic groups,” in: Algebraic Geometry 4. Advances in Science and Technique [in Russian], 55, VINITI, Moscow (1989), pp. 5–136.Google Scholar
  17. 17.
    T. A. Springer, Linear Algebraic Groups, Birkhäuser Boston Inc., Boston (1998).Google Scholar
  18. 18.
    R. Steinberg, Lectures on Chevalley Groups [in Russian], Mir, Moscow (1975).Google Scholar
  19. 19.
    N. A. Vavilov, A. Yu. Luzgarev, and I. M. Pevzner, “The Chevalley group of type E6 in the 27-dimensional representation,” Zap. Nauchn. Semin. POMI, 338, 5–68 (2006).Google Scholar
  20. 20.
    N. A. Vavilov and I. M. Pevzner, “Triples of long root subgroups,” Zap. Nauchn. Semin. POMI, 343, 54–83 (2007).MathSciNetGoogle Scholar
  21. 21.
    N. A. Vavilov and A. A. Semenov, “Long root tori in Chevalley groups,” Algebra Analiz, 24, No. 3, 22–83 (2012).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Herzen State Pedagogical University of RussiaSt. PetersburgRussia

Personalised recommendations