Advertisement

Simple 14-Dimensional Lie Algebras in Characteristic Two

  • M. I. KuznetsovEmail author
  • A. V. Kondrateva
  • N. G. Chebochko
Article

Using theory of deformations of Lie algebra of type G2, isomorphisms between the known simple 14-dimensional Lie algebras over a field of even characteristic and Lie algebras of Cartan type of S or H are constructed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. G. Chebochko, “Deformations of classical Lie algebras with homogeneous root system in characteristic two. I,” Mat. Sb., 196, No. 9, 125–156 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    N. G. Chebochko and M. I. Kuznetsov, “Integrable cocycles and global deformations of Lie algebra of type G 2 in characteristic 2,” Commun. Algebra, 45, 2969–2977 (2017).CrossRefzbMATHGoogle Scholar
  3. 3.
    D. E. Frohardt and R. L. Griess (Jr.), “Automorphisms of modular Lie algebras,” Nova J. Alg. Geom., 1, 339–345 (1992).Google Scholar
  4. 4.
    S. A. Kirillov, M. I. Kuznetsov, and N. G. Chebochko, “Deformations of a Lie algebra of type G 2 of characteristic three,” Matematika, Izv. VUZ’ov, No. 3, 33–38 (2000).Google Scholar
  5. 5.
    A. I. Kostrikin, “A parametric family of simple Lie algebras,” Izv. AN SSSR, Ser. Mat., 34, 744–756 (1970).MathSciNetGoogle Scholar
  6. 6.
    A. I. Kostrikin and M. I. Kuznetsov, “On deformations of classical Lie algebras of characteristic three,” Dokl. Ross. Akad. Nauk, 343, No. 3, 299–301(1995).MathSciNetzbMATHGoogle Scholar
  7. 7.
    A. I. Kostrikin and I. R. Shafarevich, “Graded Lie algebras of finite characteristic,” Izv. AN SSSR, Ser. Mat., 33, 251–322 (1969).MathSciNetGoogle Scholar
  8. 8.
    M. I. Kuznetsov and N. G. Chebochko, “Deformations of classical Lie algebras,” Mat. Sb., 191, No. 8, 69–88 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    M. I. Kuznetsov, A. V. Kondrat’eva, and N. G. Chebochko, “On Hamiltonian Lie Algebras of Characteristic 2,” Mat. J., 16, No. 2, 54–66 (2016).Google Scholar
  10. 10.
    L. Lin, “Non-alternating hamiltonian algebra P(n,m) of characteristic 2,” Commun. Algebra, 21, No. 2, 399–411 (1993).CrossRefzbMATHGoogle Scholar
  11. 11.
    A. N. Rudakov, “Deformations of simple Lie algebras,” Izv. AN SSSR, Ser. Mat., 35, 1113–1119 (1971).MathSciNetzbMATHGoogle Scholar
  12. 12.
    G.-Y. Shen, “Variations of the classical Lie algebra G 2 in low characteristics,” Nova J. Alg. Geom. 2, No. 3, 217–243 (1993).zbMATHGoogle Scholar
  13. 13.
    G.-Y. Shen, “Lie algebras of CL type,” J. Algebra, 249, 95–109 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    H. Strade, Simple Lie Algebras over Fields of Positive Characteristic. I. Structure Theory, de Gruyter (2004).Google Scholar
  15. 15.
    H. Strade, Simple Lie Algebras over Fields of Positive Characteristic. II. Classifying the Absolute Toral Rank Two Case, de Gruyter (2009).Google Scholar
  16. 16.
    H. Strade, Simple Lie Algebras over Fields of Positive Characteristic. III. Completion of the Classification, de Gruyter (2013).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. I. Kuznetsov
    • 1
    Email author
  • A. V. Kondrateva
    • 1
  • N. G. Chebochko
    • 2
  1. 1.Lobachevsky State University of Nizhnij NovgorodNizhnij NovgorodRussia
  2. 2.National Research University Higher School of EconomicsNizhnij NovgorodRussia

Personalised recommendations