Advertisement

Hochschild Cohomology for Algebras of Dihedral Type. VII. The Family D(3R)

  • A. I. GeneralovEmail author
  • M. A. Filippov
Article

The Hochschild cohomology groups for algebras of dihedral type which are contained in the family D(3R) (from the famous K.Erdmann’s classification) are calculated. In the calculation, a construction of the minimal bimodule resolution for algebras from the family under discussion, that is defined in the present paper, is used.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Generalov, “Hochschild cohomology of algebras of dihedral type, I: the family D(3K) in characteristic 2,” Algebra Analiz, 16, No. 6, 53–122 (2004).Google Scholar
  2. 2.
    A. I. Generalov, “Hochschild cohomology of algebras of dihedral type. II. Local algebras,” Zap. Nauchn. Semin. POMI, 375, 92–129 (2010).zbMATHGoogle Scholar
  3. 3.
    A. I. Generalov, “Hochschild cohomology of algebras of dihedral type. III. Local algebras in characteristic 2,” Vestnik St. Petersburg Univ., Ser. Math. No. 1, 28–38 (2010).Google Scholar
  4. 4.
    A. I. Generalov and N. Yu. Kosovskaia, “Hochschild cohomology of algebras of dihedral type. IV. The family D(2B)(k, s, 0),” Zap. Nauchn. Semin. POMI, 423, 67–104 (2014).Google Scholar
  5. 5.
    A. I. Generalov, I. M. Zilberbord, and D. B. Romanova, “Hochschild cohomology of algebras of dihedral type. V. The family D(3K) in characteristic different from 2,” Zap. Nauchn. Semin. POMI, 430, 74–102 (2014).zbMATHGoogle Scholar
  6. 6.
    A. I. Generalov and D. B. Romanova, “Hochschild cohomology of algebras of dihedral type. VI. The family D(2B)(k, s, 1),” Algebra Analiz, 27, No. 6, 89–116 (2009).Google Scholar
  7. 7.
    K. Erdmann, Blocks of Tame Representation Type and Related Algebras, Berlin, Heidelberg (1990).Google Scholar
  8. 8.
    A. I. Generalov, “Hochschild cohomology of algebras of semidihedral type, I. Group algebras of semidihedral groups,” Algebra Analiz, 21, No. 2, 1–51 (2009).MathSciNetGoogle Scholar
  9. 9.
    A. I. Generalov, “Hochschild cohomology of algebras of semidihedral type. II. Local algebras,” Zap. Nauchn. Semin. POMI, 386, 144–202 (2011).Google Scholar
  10. 10.
    A. I. Generalov, “Hochschild cohomology of algebras of semidihedral type. III. The family SD(2B)2 in characteristic 2,” Zap. Nauchn. Semin. POMI, 400, 133–157 (2012).Google Scholar
  11. 11.
    A. I. Generalov, “Hochschild cohomology of algebras of semidihedral type. IV. The cohomology algebra for the family SD(2B)2(k, t, c) in the case c = 0,” Zap. Nauchn. Semin. POMI, 413, 45–92 (2013).Google Scholar
  12. 12.
    A. I. Generalov and I. M. Zilberbord, “Hochschild cohomology of algebras of semidihedral type. V. The family SD(3K),” Zap. Nauchn. Semin. POMI, 435, 5–32 (2015).Google Scholar
  13. 13.
    A. I. Generalov, “Hochschild cohomology of algebras of semidihedral type. VI. The family SD(2B)2 in characteristic different from 2,” Zap. Nauchn. Semin. POMI, 443, 61–77 (2016).Google Scholar
  14. 14.
    A. I. Generalov, “Hochschild cohomology of algebras of semidihedral type. VII. Algebras with a small parameters,” Zap. Nauchn. Semin. POMI, 452, 52–69 (2016).Google Scholar
  15. 15.
    A. I. Generalov and A. A. Zaikovskii, “On derived equivalence of algebras of semidihedral type with two simple modules,” Zap. Nauchn. Semin. POMI, 452, 70–85 (2016).zbMATHGoogle Scholar
  16. 16.
    A. I. Generalov, “Hochschild cohomology of algebras of quaternion type, I: generalized quaternion groups,” Algebra Analiz, 18, No. 1, 55–107 (2006).Google Scholar
  17. 17.
    A. I. Generalov, A. A. Ivanov, and S. O. Ivanov, “Hochschild cohomology of algebras of quaternion type. II. The family Q(2B)1 in characteristic 2,” Zap. Nauchn. Semin. POMI, 349, 53–134 (2007).Google Scholar
  18. 18.
    A. I. Generalov, “Hochschild cohomology of algebras of quaternion type. III. Algebras with a small parameter,” Zap. Nauchn. Semin. POMI, 356, 46–84 (2008).Google Scholar
  19. 19.
    A. A. Ivanov, “Hochschild cohomology of algebras of quaternion type: the family Q(2B)1(k, s, a, c) over a field with characteristic different from 2,” Vestnik St. Petersburg Univ. Ser. Math., No. 1, 63–72 (2010).Google Scholar
  20. 20.
    Yu. V. Volkov, A. I. Generalov, and S. O. Ivanov, “On construction of bimodule resolutions with the help of Happel’s lemma,” Zap. Nauchn. Semin. POMI, 375, 61–70 (2010).zbMATHGoogle Scholar
  21. 21.
    A. I. Generalov and N. V. Kosmatov, “Projective Resolutions and Yoneda algebras for algebras of Dihedral Type,” Algebras Repr. Theory, 10, 241–256 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
  23. 23.
    R. Vakil, “Spectral Sequences: Friend or Foe?,” http://math.stanford.edu/~vakil/0708-216/216ss.pdf.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations