Advertisement

Journal of Mathematical Sciences

, Volume 240, Issue 3, pp 358–373 | Cite as

Nonlinear Boundary-Layer Problems and Laminar Vortical Streams Generated by Resonant Sloshing in a Tank with Circular Base

  • A. N. Timokha
Article
  • 20 Downloads

For a viscous incompressible liquid with laminar flows, we deduce nonlinear boundary-layer problems for the near-surface flows near wetted surfaces (wall and bottom) of a rigid tank with circular base partly filled with a liquid of finite depth. Under the assumption that the resonant steady-state inviscid liquid sloshing caused by the horizontal translational orbital motion of the tank with forcing frequency close to the lowest natural sloshing frequency is known, by adopting the Narimanov–Moiseev-type approximation of the above-mentioned inviscid sloshing, we construct an analytic asymptotic solution of the obtained boundary-layer problems. It is shown that the inviscid flows must contain a global stationary vortex component. A new nonlinear boundary-value problem governing this component is proposed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. N. Abramson, The Dynamic Behavior of Liquids in Moving Containers with Applications to Space Vehicle Technology, Tech. Rept. NASA, NASA, Washington (1966).Google Scholar
  2. 2.
    G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge Univ. Press, Cambridge (2000).CrossRefGoogle Scholar
  3. 3.
    J. Bouvard, W. Herreman, and F. Moisy, “Mean mass transport in an orbitally shaken cylindrical container,” Phys. Rev. Fluids, 2, Issue 8, Paper ID 084801 (2017).Google Scholar
  4. 4.
    P. J. Bryant, “Nonlinear progressive waves in a circular basin,” J. Fluid Mech., 205, 453–467 (1989).MathSciNetCrossRefGoogle Scholar
  5. 5.
    A. Ducci and W. H. Weheliye, “Orbitally shaken bioreactors-viscosity effects on flow characteristics,” AIChE J., 60, 3951–3968 (2014).CrossRefGoogle Scholar
  6. 6.
    O. M. Faltinsen, I. A. Lukovsky, and A. N. Timokha, “Resonant sloshing in an upright tank,” J. Fluid Mech., 804, 608–645 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    O. M. Faltinsen and A. N. Timokha, Sloshing, Cambridge Univ. Press, Cambridge (2009).zbMATHGoogle Scholar
  8. 8.
    R. E. Hutton, “Fluid-particle motion during rotary sloshing,” J. Appl. Mech. Trans. ASME, 31, No. 1, 145–153 (1964).CrossRefzbMATHGoogle Scholar
  9. 9.
    I. Lukovsky and A. N. Timokha, “Multimodal method in sloshing,” J. Math. Sci., 220, 239–253 (2017).CrossRefGoogle Scholar
  10. 10.
    I. Lukovsky and A. N. Timokha, “Combining Narimanov–Moiseev’s and Lukovsky–Miles’ schemes for nonlinear liquid sloshing,” J. Numer. Appl. Math., 105, 69–82 (2011).Google Scholar
  11. 11.
    I. A. Lukovsky, Nonlinear Dynamics: Mathematical Models for Rigid Bodies with Liquid, De Gruyter, Berlin (2015).zbMATHGoogle Scholar
  12. 12.
    N. N. Moiseev, “On the theory of nonlinear vibrations of a liquid of finite volume,” J. Appl. Math. Mech., 22, No. 5, 860–872 (1958).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    G. S. Narimanov, L. V. Dokuchaev, and I. A. Lukovsky, Nonlinear Dynamics of Flying Vehicles with Liquid [in Russian], Mashinostroenie, Moscow (1977).Google Scholar
  14. 14.
    A. D. Polyanin and V. E. Nasaikinskii, Handbook of Linear Partial Differential Equations for Engineers and Scientists, 2nd Edn., Taylor & Francis Group, CRC Press, London (2015).Google Scholar
  15. 15.
    L. Prandtl, “Erzeugung von Zirkulation beim Schütteln von Gefässen,” Z. Angew. Math. Mech., 29, 8–9 (1949).CrossRefGoogle Scholar
  16. 16.
    S. Rebouillat and D. Liksonov, “Fluid-structure interaction in partially filled liquid containers: A comparative review of numerical approaches,” Comput. Fluids, 39, 739–746 (2010).CrossRefzbMATHGoogle Scholar
  17. 17.
    M. Reclari, Hydrodynamics of Orbital Shaken Bioreactors: Thesis No. 5759, Ecole Polytech. Federale de Lausanne (2013).Google Scholar
  18. 18.
    M. Reclari, M. Dreyer, S. Tissot, D. Obreschkow, F. M. Wurm, and M. Farhat, “Surface wave dynamics in orbital shaken cylindrical containers,” Phys. Fluids, 26, 1–11 (2014).CrossRefGoogle Scholar
  19. 19.
    N. Riley, “Steady streaming,” Ann. Rev. Fluid Mech., 33, 43–65 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    A. Royon-Lebeaud, E. Hopfinger, and A. Cartellier, “Liquid sloshing and wave breaking in circular and square-base cylindrical containers,” J. Fluid Mech., 577, 467–494 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    W. Weheliye, M. Yianneskis, and A. Ducci, “On the fluid dynamics of shaken bioreactors—flow characterization and transition,” AIChE J., 59, 334–344 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. N. Timokha
    • 1
    • 2
  1. 1.Institute of MathematicsUkrainian National Academy of SciencesKyivUkraine
  2. 2.Centre for Autonomous Marine Operations and Systems, Department of Marine TechnologyNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations