Advertisement

Journal of Mathematical Sciences

, Volume 239, Issue 5, pp 608–643 | Cite as

Abstract Mixed Boundary-Value and Spectral Conjugation Problems and their Applications

  • N. D. KopachevskiiEmail author
  • K. A. Radomirskaya
Article
  • 1 Downloads

Abstract

Based on the abstract Green formula, we study a general approach to abstract boundary value conjugation problems. We consider examples of some configurations of docked domains for conjugation problems, using the generalized Green formula for the Laplace operator. Also, we consider spectral problems with two complex parameters: one of them can be treated as a fixed one, while the other can be treated as the spectral one. By means of the proposed general approach, we reduce those problems to the spectral problem for operator bundles with self-adjoint operator coefficients acting in Hilbert space and depending on two parameters.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. S. Agranovich, “Remarks on potential spaces and Besov spaces in a Lipschitz domain and on Whitney arrays on its boundary,” Russ. J. Math. Phys., 15, No. 2, 146–155 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    M. S. Agranovich, Sobolev Spaces, Their Generalizations, and Elliptic Problems in Domains with Smooth and Lipschitz Boundary [in Russian], MTsNMO, Moscow (2013).Google Scholar
  3. 3.
    M. S. Agranovich, Sobolev Spaces, Their Generalizations, and Elliptic Problems in Smooth and Lipschitz Domains, Springer, Cham (2015).CrossRefzbMATHGoogle Scholar
  4. 4.
    M. S. Agranovich, G.A. Amosov, and M. Levitin, “Spectral problems for the Lame system insmooth and nonsmooth domains with spectral parameter in the boundary-value condition,” Russ. J. Math. Phys., 6, No. 3, 247–281 (1999).MathSciNetzbMATHGoogle Scholar
  5. 5.
    M. S. Agranovich, B. Z. Katsenelenbanm, A. N. Sivov, and N.N. Voitovich, Generalized Method of Eigenoscillations in Diffraction Theory, Wiley-VCN, Berlin (1999).zbMATHGoogle Scholar
  6. 6.
    M. S. Agranovich and R. Menniken, “Spectral problems for the Helmholtz equation with spectral parameter in the boundary-value conditions on nonsmooth surface,” Mat. Sb., 30, No. 1, 29–68 (1999).CrossRefGoogle Scholar
  7. 7.
    J.-P. Aubin, “Abstract boundary-value operators and their adjoint,” Rend. Semin. Math. Univ. Padova, 43, 1–33 (1970).MathSciNetzbMATHGoogle Scholar
  8. 8.
    J.-P. Aubin, Approximation of Elliptic Boundary-Value Problems [Russian translation], Mir, Moscow (1977).Google Scholar
  9. 9.
    V. G. Babskiy, N. D. Kopachevskiy, A.D. Myshkis, L. A. Slobozhanin, and A. D. Tyuptsov, Hydromechanics in Weightlessness [in Russian], Nauka, Moscow (1976).Google Scholar
  10. 10.
    V. G. Babskiy, M.Yu. Zhukov, N. D. Kopachevskiy, A.D. Myshkis, L.A. Slobozhanin, and A.D. Tyuptsov, Methods of Solution for Problems of Hydromechanics in Weightlessness Conditions [in Russian], Naukova Dumka, Kiev (1992).Google Scholar
  11. 11.
    V. I. Gorbachuk, “Dissipative boundary-value problems for elliptic differential equations,” Functional and 0.Numerical Methods of Mathematical Physics, Naukova dumka, Kiev, 60–63 (1998).Google Scholar
  12. 12.
    N. D. Kopachevskiy, “On abstract Green formula for triple of Hilbert spaces and its applications to the Stokes problem,” Tavr. Vestn. Inform. i Mat., 2, 52–80 (2004).Google Scholar
  13. 13.
    N.D. Kopachevskiy, “Abstract Green formula for mixed boundary-value problems,” Sci. Notes Tavricheskiy Nat. Vernadskiy Univ. Ser. Math. Mech. Inform. Cybern., 20, No. 2, 3–12 (2007).Google Scholar
  14. 14.
    N. D. Kopachevskiy, “On abstract Green formula for mixed boundary-value problems and some of its applications,” Spectral Evolution Probl., 21, No. 1, 2–39 (2011).Google Scholar
  15. 15.
    N. D. Kopachevskiy, “On abstract Green formula for a triple of Hilbert spaces and sesquilinear forms,” Sovrem. Mat. Fundam. Napravl., 57, 71–107 (2015).Google Scholar
  16. 16.
    N.D. Kopachevsky and S.G. Krein, Operator Approach to Linear Problems of Hydrodynamics. Vol. 1: Self-Adjoint Problems for an Ideal Fluid, Birkh¨auser, Basel–Boston–Berlin (2001).Google Scholar
  17. 17.
    N.D. Kopachevsky and S.G. Krein, Operator Approach to Linear Problems of Hydrodynamics. Vol. 2: Non-Self-Adjoint Problems for a Viscous Fluid, Birkh¨auser, Basel–Boston–Berlin (2003).Google Scholar
  18. 18.
    N. D. Kopachevskiy and S.G. Krein, “An abstract Green formula for a triple of Hilbert spaces, and abstract boundary value and spectral problems,” Ukr. Mat. Visn., 1, No. 1, 69–97 (2004).MathSciNetGoogle Scholar
  19. 19.
    N. D. Kopachevskiy, S.G. Krein, and Ngo Zuy Kan, Operator Methods in Linear Hydrodynamics: Evolution and Spectral Problems [in Russian], Nauka, Moscow (1989).Google Scholar
  20. 20.
    N. D. Kopachevskiy and K. A. Radomirskaya, “Abstract mixed boundary-value conjugation problems,” Abstr. of the Fifth International Conference “Contemporary Methods and Problems of Operator Theory and Harmonic Analysis and Their Applications,” Rostov-na-Donu, 211 (2015).Google Scholar
  21. 21.
    N. D. Kopachevskiy and K. A. Radomirskaya, “Abstract boundary-value and spectral conjugation problems,” Abstr. of the XXVI Crimean Autumn Mathematical School-Symposium on Spectral and Evolution Problems, Batiliman–Laspi, 52 (2015).Google Scholar
  22. 22.
    S. G. Krein, “Oscillations of a viscous fluid in a container,” Dokl. Akad. Nauk SSSR, 159, No. 2, 262–265 (1964).MathSciNetGoogle Scholar
  23. 23.
    S.G. Krein and G. I. Laptev, “On the problem of the motion of a viscous fluid in an open vessel,” Funktsional. Anal. i Prilozhen., 2, No. 1, 40–50 (1968).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    J.-L. Lions and E. Magenes, Nonhomogeneous Boundary-Value Problems and Their Applications [Russian translation], Mir, Moscow (1971).Google Scholar
  25. 25.
    W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge (2000).zbMATHGoogle Scholar
  26. 26.
    A.D. Myshkis, V.G. Babskii, N.D. Kopachevskii, L.A. Slobozhanin, and A.D. Tyuptsov, Low-Gravity Fluid Mechanics, Springer, Berlin (1987).CrossRefGoogle Scholar
  27. 27.
    V. S. Rychkov, “On restrictions and extensions of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains,” J. London Math. Soc. (2), 60, No. 1, 237–257 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    R.E. Showalter, Hilbert Space Methods for Partial Differential Equations, Southwest Texas State Univ., San Marcos (1994).Google Scholar
  29. 29.
    P. A. Starkov, “Operator approach to conjugation problems,” Sci. Notes Tavricheskiy Nat. Vernadskiy Univ. Ser. Math. Mech. Inform. Cybern., 15, No. 2, 82–88 (2002).Google Scholar
  30. 30.
    P. A. Starkov, “On the basis property of eigenelements in conjugation problems,” Tavricheskiy Bull. Inform. Math., 1, 118–131 (2003).zbMATHGoogle Scholar
  31. 31.
    P. A. Starkov, “Examples of multicomponent conjugation problems,” Sci. Notes Tavricheskiy Nat. Vernadskiy Univ. Ser. Math. Mech. Inform. Cybern., 18, No. 1, 89–94 (2005).Google Scholar
  32. 32.
    L. R. Volevich and S.G. Gindikin, Generalized Functions and Convolution Equations [in Russian], Nauka, Moscow (1994).Google Scholar
  33. 33.
    V. I. Voytitskiy, “Abstract Stefan spectral problem,” Sci. Notes Tavricheskiy Nat. Vernadskiy Univ. Ser. Math. Mech. Inform. Cybern., 19, No. 2, 20–28 (2006).Google Scholar
  34. 34.
    V. I. Voytitskiy, “On spectral problems generated by the Stefan problem with Gibbs–Thomson conditions,” Nelinein. Granichnye Zadachi, 17, 31–49 (2007).MathSciNetGoogle Scholar
  35. 35.
    V. I. Voytitsky and N.D. Kopachevsky, “On the modified spectral Stefan problem and its abstract generalizations,” Modern Analysis and Applications. The Mark Krein Centenary Conference. Vol. 2: Differential Operators and Mechanics, Birkhäuser, Basel, 381–394 (2009).Google Scholar
  36. 36.
    V. I. Voytitskiy, N.D. Kopachevskiy, and P.A. Starkov, “Multicomponent conjugation problems and auxiliary abstract boundary-value problems,” Sovrem. Mat. Fundam. Napravl., 34, 5–44 (2009).Google Scholar
  37. 37.
    V. I. Voytitsky, N. D. Kopachevsky, and P.A. Starkov, “Multicomponent conjugation problems and auxiliary abstract boundary-value problems,” J. Math. Sci., 170, No. 2, 131–172 (2010).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.V. I. Vernadsky Crimean Federal UniversitySimferopolRussia

Personalised recommendations