Advertisement

Journal of Mathematical Sciences

, Volume 239, Issue 5, pp 582–607 | Cite as

Oldroyd Model for Compressible Fluids

  • D. A. ZakoraEmail author
Article
  • 3 Downloads

Abstract

In this paper, mathematical models of compressible viscoelastic Maxwell, Oldroyd, and Kelvin–Voigt fluids are derived. A model of rotating viscoelastic barotropic Oldroyd fluid is studied. A theorem on strong unique solvability of the corresponding initial-boundary value problem is proved. The spectral problem associated with such a system is studied. Results on the spectrum localization, essential and discrete spectra, and spectrum asymptotics are obtained. In the case where the system is in the weightlessness state and does not rotate, results on multiple completeness and basis property of a special system of elements are proved. In such a case, under the assumption the viscosity is sufficiently large, an expansion of the solution of the evolution problem with respect to a special system of elements is obtained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.Ya. Azizov and I. S. Iokhvidov, Foundations of Theory of Linear Operators in Spaces with Indefinite Metrics [in Russian], Nauka, Moscow (1986).zbMATHGoogle Scholar
  2. 2.
    T.Ya. Azizov, N. D. Kopachevskiy and L.D. Orlova, “Evolution and spectral problems generated by the problem of small movements of viscoelastic fluid,” Tr. St.-Peterbg. Mat. Obshch., 6, 5–33 (1998).Google Scholar
  3. 3.
    Yu. M. Berezanskiy, Expansion in Eigenfunctions of Self-Adjoint Operators [in Russian], Naukova Dumka, Kiev (1965).Google Scholar
  4. 4.
    M. Sh. Birman and M. Z. Solomyak, “Asymptotic properties of the spectrum of differential equations,” Mathematical Analysis, 14, 5–58 (1977).MathSciNetGoogle Scholar
  5. 5.
    M. Sh. Birman and M. Z. Solomjak, Spectral Theory of Self-Adjoint Operators in Hilbert Space, D. Reidel Publishing Company, Dordrecht–Boston–Lancaser–Tokyo (1987).Google Scholar
  6. 6.
    A. Freudenthal and H. Geiringer, The Mathematical Theories of the Inelastic Continuum [Russian translation], Fizmatgiz, Moscow (1962).Google Scholar
  7. 7.
    I. Gohberg, S. Goldberg, and M. A. Kaashoek, Classes of Linear Operators. Vol. 1, Birkhäuser, Basel–Boston–Berlin (1990).Google Scholar
  8. 8.
    J. A. Goldsteyn, Semigroups of Linear Operators and Their Applications [Russian translation], Vyshcha Shkola, Kiev (1989).Google Scholar
  9. 9.
    G. Grubb and G. Geymonat, “The essential spectrum of elliptic systems of mixed order,” Math. Ann., 227, 247–276 (1977).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    T. Kato, Perturbation Theory for Linear Operators [Russian translation], Mir, Moscow, (1972).Google Scholar
  11. 11.
    W. Kelvin (Thomson), “On the theory of viscoelastic fluids,” Math. A. Phys. Pap., 3, 27–84 (1875).Google Scholar
  12. 12.
    N. D. Kopachevsky and S. G. Krein, Operator Approach to Linear Problems of Hydrodynamics.Vol. 2: Nonself-Adjoint Problems for Viscous Fluids, Birkh¨auser, Basel–Boston–Berlin (2003).Google Scholar
  13. 13.
    N. D. Kopachevskiy, S.G. Krein, and Ngo Zuy Kan, Operator Methods in Linear Hydrodynamics: Evolution and Spectral Problems [in Russian], Nauka, Moscow (1989).Google Scholar
  14. 14.
    S.G. Krein, Linear Differential Equations in Banach Space [in Russian], Nauka, Moscow (1967).Google Scholar
  15. 15.
    A. S. Markus, Introduction to Spectral Theory of Polynomial Operator Pencils [in Russian], Shtiintsa, Kishinev (1986).Google Scholar
  16. 16.
    A. S. Markus and V. I. Matsaev, “Theorem on comparison of spectra and spectral asymptotics for the M. V. Keldysh pencil,” Mat. Sb., 123, No. 3, 391–406 (1984).MathSciNetzbMATHGoogle Scholar
  17. 17.
    J.C. Maxwell, “On the dynamical theory of gases,” Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 157, 49–88 (1867).Google Scholar
  18. 18.
    J.C. Maxwell, “On the dynamical theory of gases,” Philos. Mag., 35, 129–145 (1868).CrossRefzbMATHGoogle Scholar
  19. 19.
    A. I. Miloslavskii, “Spectral analysis of small oscillations of a viscoelastic fluid in an open vessel,” Deposited in Ukr. NIINTI, No. 1221 (1989).Google Scholar
  20. 20.
    A. I. Miloslavskii, “The spectrum of small oscillations of a viscoelastic hereditary medium,” Dokl. Akad. Nauk SSSR, 309, No. 3, 532–536 (1989).MathSciNetGoogle Scholar
  21. 21.
    S. G. Mikhlin, “Spectrum of the operator pencil from the elasticity theory,” Uspekhi Mat. Nauk, 28, No. 3, 43–82 (1973).MathSciNetGoogle Scholar
  22. 22.
    J. G. Oldroyd, “On the formulation of rheological equations of state,” Proc. Roy. Soc. London. Ser. A, 200, 523–541 (1950).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    J.G. Oldroyd, “The elastic and viscous properties of emulsions and suspensions,” Proc. Roy. Soc. London. Ser. A, 218, 122–132 (1953).CrossRefzbMATHGoogle Scholar
  24. 24.
    A. P. Oskolkov, “Initial-boundary value problems for equations of motion of Kelvin-Voight fluids and Oldroyd fluids,” Trudy Mat. Inst. Steklov., 179, 126–164 (1988).MathSciNetGoogle Scholar
  25. 25.
    A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York (1983).CrossRefzbMATHGoogle Scholar
  26. 26.
    K. Rektoris, Variational Methods in Mathematical Physics and Technics [Russian translation], Mir, Moscow (1985).Google Scholar
  27. 27.
    V. A. Solonnikov, “General boundary value problems for systems elliptic in the sense of A. Douglis and L. Nirenberg. II,” Trudy Mat. Inst. Steklov., 92, 233–297 (1966).MathSciNetGoogle Scholar
  28. 28.
    W. Voight, “Uber die innere Reibung der fasten Korper, inslesondere der krystalle,” Gottinden Abh., 36, No. 1, 3–47 (1889).Google Scholar
  29. 29.
    W. Voight, “Uber innex Reibung faster Korper, insbesondere der Metalle,” Ann. Phys. U. Chem., 47, No. 9, 671–693 (1892).CrossRefGoogle Scholar
  30. 30.
    D. A. Zakora, “Operator approach to the Il’yushin model of a viscoelastic body of parabolic type,” Sovrem. Mat. Fundam. Napravl., 57, 31–64 (2015).MathSciNetGoogle Scholar
  31. 31.
    V.G. Zvyagin and M.V. Turbin, “Investigation of initial-boundary value problems for Kelvin–Voigt mathematical models of motion of fluids,” Sovrem. Mat. Fundam. Napravl., 31, 3–144 (2009).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.V. I. Vernadsky Crimean Federal UniversitySimferopolRussia
  2. 2.Voronezh State UniversityVoronezhRussia

Personalised recommendations