On properties of functions from Lizorkin–Triebel–Morrey-type spaces

  • Alik M. NajafovEmail author
  • Azizgul M. Gasimova


We have introduced new functional spaces of the Lizorkin–Triebel–Morrey type, and a Sobolev-type inequality is proved. We have also shown that the generalized derivatives of functions from this spaces satisfy the generalized Hölder condition.


Lizorkin–Triebel–Morrey-type spaces integral representation embedding theorems generalized Hölder condition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. V. Besov, V. P. Il’in, and S. M. Nikolskii, Integral Representations of Functions and Embedding Theorems [in Russian], Nauka, Moscow, 1996.Google Scholar
  2. 2.
    A. Eroglu, J. V. Azizov, and V. S. Guliyev, “Fractional maximal operator and its commutators in generalized Morrey spaces on Heisenberg group,” Proc. Inst. Math. Mech. Azerbaijan Nat. Acad. Sci., 44 (2), 304–317 (2018).MathSciNetGoogle Scholar
  3. 3.
    V. P. Il’in, “On some properties of functions from spaces \( {W}_{p,a,\mathrm{ae}}^l(G) \),” Zap. Nauchn. Sem. LOMI AN SSSR, 23, 33–40 (1971).Google Scholar
  4. 4.
    V. Kokilashvili, A. Meskhi, and H. Rafeiro, “Sublinear operators in generalized weighted Morrey spaces,” Dokl. Math., 94, No. 2, 558–560 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    A. I. Mazzucato, “Besov–Morrey spaces. Function space theory and applications to non-linear PDE,” Trans. Amer. Math. Soc., 355, No. 4, 1297–1364 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations,” Trans. Amer. Math. Soc., 43, 126–166 (1938).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    C. B. Morrey, “Second order elliptic equations in several variables and Holder continuity,” Math. Zeit., 72, No. 2, 146–164 (1959/1960).Google Scholar
  8. 8.
    A. M. Najafov, “Interpolation theorem of Besov–Morrey-type spaces and some its applications,” Trans. ISSUE. Math. Mech., Baku, 24, No. 4, 125–134 (2001).MathSciNetGoogle Scholar
  9. 9.
    A. M. Najafov, “On some properties of functions in the Sobolev–Morrey-type spaces \( {W}_{p,a,\aleph, \tau}^l(G) \),” Siberian Math. J., 46, Issue 3, 501–513 (2005).Google Scholar
  10. 10.
    A. M. Najafov, “Some properties of functions from the intersection of Besov–Morrey-type spaces with dominant mixed derivatives,” Proc. A. Razmadze Math. Inst., 139, 71–82 (2005).MathSciNetzbMATHGoogle Scholar
  11. 11.
    A. M. Najafov, “On some properties of the functions from Sobolev–Morrey-type spaces,” Central Europ. J. of Math., 3, No. 3, 496–507 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    A. M. Najafov, “The embedding theorems of space \( {W}_{p,\varphi, \beta}^l(G) \),” Math. Aeterna, 3, No. 4, 299–308 (2013).Google Scholar
  13. 13.
    E. Nakai, “Hardy–Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces,” Math. Nachr., 166, 95–103 (1994).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Yu. V. Netrusov, “On some imbedding theorems of Besov–Morrey type,” Zap. Nauchn. Sem. LOMI AN SSSR, 139, 139–147 (1984).MathSciNetzbMATHGoogle Scholar
  15. 15.
    J. Ross, “A Morrey–Nikolskii inequality,” Proc. Amer. Math. Soc., 78, 97–102 (1980).MathSciNetzbMATHGoogle Scholar
  16. 16.
    N. R. Rustamova, “Interpolation theorems for Besov–Morrey-type space,” in: Abstract Books. Intern. Conference on Operators in Morrey-type spaces and applications, OMTSA dedicated to the 60-th Brithday of Prof. V. S. Guliyev, Ahi Evran Univ., Kirshehir, Turkey, 2017, pp. 146–147.Google Scholar
  17. 17.
    Y. Sawano, “Idendification of the image of Morrey spaces by the fractional integral operators,” Proc. of A. Razmadze Math. Inst., 149, 87–93 (2009).MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Azerbaijan University of Architecture and Construction, Institute of Mathematics and MechanicsNational Academy of Sciences of AzerbaijanBakuAzerbaijan
  2. 2.Sumgait State UniversitySumgaitAzerbaijan

Personalised recommendations