Advertisement

Journal of Mathematical Sciences

, Volume 238, Issue 5, pp 736–749 | Cite as

Asymptotics of the Resonant Tunneling of High-Energy Electrons in Two-Dimensional Quantum Waveguides of Variable Cross-Section

  • O. V. SarafanovEmail author
Article

A waveguide occupies a strip in ℝ2 having two identical narrows of small diameter ε. An electron wave function satisfies the Helmholtz equation with the homogeneous Dirichlet boundary condition. The energy of electrons may be rather high, i.e., any (fixed) number of waves can propagate in the strip far from the narrows. As ε → 0, a neighborhood of a narrow is assumed to transform into a neighborhood of the common vertex of two vertical angles. The part of the waveguide between the narrows as ε = 0 is called the resonator. An asymptotics of the transmission coefficient is obtained in the waveguide as ε → 0. Near a degenerate eigenvalue of the resonator, the leading term of the asymptotics has two sharp peaks. Positions and shapes of the resonant peaks are described.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. M. Baskin, P. Neittaanmäki, B. A. Plamenevskii, and A. A. Pozharskii, “On electron transport in 3D quantum waveguides of variable cross-section,” Nanotechnology, 17, 19-23 (2006).CrossRefGoogle Scholar
  2. 2.
    L. M. Baskin, P. Neittaanmäki, B. A. Plamenevskii, and A. A. Pozharskii, “Asymptotic theory of resonant tunneling in 3D quantum waveguides of variable cross-section,” SIAM J. Appl. Math., 70, No. 5, 1542–1566 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    L. M. Baskin, M. M. Kabardov, P. Neittaanmäki, B. A. Plamenevskii, and O. V. Sarafanov, “Asymptotic and numerical study of resonant tunneling in two-dimensional quantum waveguides of variable cross-section,” Comp. Math. Math. Phys., 53, No. 11, 1664–1683 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    L. M. Baskin, B. A. Plamenevskii, and O. V. Sarafanov, “Asymptotic theory of resonant tunneling in 3D waveguides of variable cross-section in magnetic field,” J. Math. Sci., 196, No. 4, 469–489 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    L. Baskin, M. Kabardov, P. Neittaanmäki, and O. Sarafanov, “Asymptotic and numerical study of electron flow spin-polarization in 2D waveguides of variable cross-section in the presence of magnetic field,” Math. Methods Appl. Sci., 37, No. 7, 1072–1092 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    L. M. Baskin, P. Neittaanmäki, and B. A. Plamenevskii, “Semiconductor device and method to control the states of the semiconductor device and to manufacture the same,” Patent 121489, Finland (2010).Google Scholar
  7. 7.
    L. M. Baskin, P. Neittaanmäki, B. A. Plamenevskii, and A. A. Pozharskii, “Arrangement in a waveguide branch for channeling an electron flow and corresponding method,” Patent 122219, Finland (2011).Google Scholar
  8. 8.
    L. M. Baskin, M. M. Kabardov, P. Neittaanmäki, B. A. Plamenevskii, and O. V. Sarafanov, “Device for detecting magnetic fields,” Patent 124670 B, Finland (2013).Google Scholar
  9. 9.
    L. Baskin, P. Neittaanmäki, B. Plamenevskii, and O. Sarafanov, “Resonant Tunneling: Quantum Waveguides of Variable Cross-Sections, Asymptotics, Numerics, and Applications,” Lecture Notes on Numerical Methods in Engineering and Sciences, Springer (2015).Google Scholar
  10. 10.
    S. A. Nazarov and B. A. Plamenevskii, “Elliptic problems in domains with piecewise smooth boundaries,” Gruyter Exposition in Mathematics, 13, Walter de Gruyter, Berlin (1994).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.St.Petersburg, State UniversitySt.PetersburgRussia

Personalised recommendations