Advertisement

Some Aspects of the Scattering Problem for a System of Three Charged Particles

  • A. M. BudylinEmail author
  • Ya. Yu. Koptelov
  • S. B. Levin
Article
  • 1 Downloads

The question of influence of the spectral neighborhood of an accumulative point of bound energies of a pair subsystem on the structure of eigenfunctions of the continuous spectrum for a system of three charged quantum particles is studied. The unified contribution of pair high-excited states are separated in the coordinate asymptotics of such functions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. S. Buslaev, S. P. Merkuriev, and S. P. Salikov, “On diffraction character of scattering in quantum system of three one-dimensional particles,” in: Problems of Mathematical Physics, Leningrad University, Leningrad, 9 (1979), pp. 14–30.Google Scholar
  2. 2.
    V. S. Buslaev, S. P. Merkuriev, and S. P. Salikov, “Description of pair potentials for which the scattering in the system of three one-dimensional particles is free from diffraction effects,” Zap. Nauchn. Semin. LOMI, 84, 16–22 (1979).zbMATHGoogle Scholar
  3. 3.
    V. S. Buslaev and S. B. Levin, “Asymptotic behavior of the eigenfunctions of the manyparticle Shrödinger operator. I. One-dimentional Particles,” Amer. Math. Soc. Transl., 225, 55–71 (2008).Google Scholar
  4. 4.
    V. S. Buslaev and S. B. Levin, “Asymptotic behaviour of eigenfunctions of three-body Schrödinger operator. II. Charged one-dimensional particles,” Algebra Analiz, 22(3), 60–79 (2010).Google Scholar
  5. 5.
    V. S. Buslaev and S. B. Levin, “A system of three three-dimensional charged quantum particles: asymptotic behavior of the eigenfunctions of the continuous spectrum at infinity,” Funct. Analiz Prilozh., 46, No. 2, 83–89 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ya. Yu. Koptelov and S. B. Levin, “On the asymptotic behavior in the scattering problem for several charged quantum particles interacting via repulsive pair potentials,” Physics of Atomic Nuclei, 77(4), 528–536 (2014).CrossRefGoogle Scholar
  7. 7.
    A. M. Budylin, Ya. Yu. Koptelov, and S. B. Levin, “On continuous spectrum eigenfunctions asymptotics of three three-dimensional unlike-charged quantum particles scattering problem,” in: Proceedings of the International Conference, Days on Diffraction, Retersburg (2016), pp. 89–94.Google Scholar
  8. 8.
    S. B. Levin, “On the asymptotic behaviour of eigenfunctions of the continuous spectrum at infinity in configuration space for the system of three three-dimensional like-charged particles,” J. Math. Sci., 226(6), 744–768 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    E. O. Alt and A. M. Mukhamedzhanov, “Asymptotic solution of the Schrödinger equation for three charged particles,” JETP Lett., 56, No. 9, 435–438 (1992).MathSciNetGoogle Scholar
  10. 10.
    E. O. Alt and A. M. Mukhamedzhanov, “Asymptotic solution of the Schrödinger equation for three charged particles,” Phys. Rev. A, 47, No. 3, 2004–2022 (1993).MathSciNetCrossRefGoogle Scholar
  11. 11.
    M. Brauner, J. S. Briggs, and H. Klar, “Triply-differential cross sections for ionisation of hydrogen atoms by electrons and positrons,” J. Phys. B, 22, 2265–2287 (1989).CrossRefGoogle Scholar
  12. 12.
    S. P. Merkuriev and L. D. Faddeev, Quantum Scattering Theory For Several Particle Systems, Kluwer, Dordrecht (1993).zbMATHGoogle Scholar
  13. 13.
    G. Garibotti and J. E. Miraglia, “Ionization and electron capture to the continuum in the H+-hydrogen-atom collision,” Phys. Rev. A, 21(2), 572–580 (1980).CrossRefGoogle Scholar
  14. 14.
    A. L. Godunov, Sh. D. Kunikeev, V. N. Mileev, and V. S. Senashenko, in: Proceedings of the 13th International Conference on Physics of Electronic and Atomic collisions (Berlin), ed. J. Eichler (Amsterdam: North Holland), Abstracts (1983), p. 380.Google Scholar
  15. 15.
    L. D. Faddeev, Mathematical Aspects of the Three-Body Problem of the Quantum Scattering Theory, Daniel Davey and Co., Inc.,Jerusalem (1965).zbMATHGoogle Scholar
  16. 16.
    I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, San Diego (1980).zbMATHGoogle Scholar
  17. 17.
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Vol. 3 of A Course of Theoretical Physics, Pergamon Press (1965).Google Scholar
  18. 18.
    N. McLachlan, Theory and Application of Mathieu Functions, Oxford (1947).Google Scholar
  19. 19.
    F. Tricomi, “Sul comportamento asintotico dei polinomi di Laguerre,” Ann. Mat. Pura Appl. (4), 28, 263–289 (1949).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    I. M. Gelfand and G. E. Shilov, Generalized Functions and Operations With Them [in Russian], Fiz.-Mat. Lit., Moscow (1958).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. M. Budylin
    • 1
    Email author
  • Ya. Yu. Koptelov
    • 1
  • S. B. Levin
    • 1
  1. 1.St.Petersburg State UniversitySt.PetersburgRussia

Personalised recommendations