Advertisement

Journal of Mathematical Sciences

, Volume 238, Issue 4, pp 530–536 | Cite as

A Sharp Rate of Convergence for the Empirical Spectral Measure of a Random Unitary Matrix

  • E. S. MeckesEmail author
  • M. W. Meckes
Article
  • 4 Downloads

We consider the convergence of the empirical spectral measures of random N × N unitary matrices. We give upper and lower bounds showing that the Kolmogorov distance between the spectral measure and uniform measure on the unit circle is of order log N/N, both in expectation and almost surely. This implies, in particular, that the convergence happens more slowly for Kolmogorov distance than for the L1-Kantorovich distance. The proof relies on the determinantal structure of the eigenvalue process.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. P. Arguin, D. Belius, and P. Bourgade, “Maximum of the characteristic polynomial of random unitary matrices,” Comm. Math. Phys, 349, 703–751 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    G. Ben Arous and P. Bourgade, “Extreme gaps between eigenvalues of random matrices,” Ann. Probab, 41(4), 2648–2681 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    P. Bourgade, “Personal communication.”Google Scholar
  4. 4.
    S. Dallaporta, “Eigenvalue variance bounds for Wigner and covariance random matrices,” Random Matrices Theory Appl., 1(3), 28, 1250007 (2012).Google Scholar
  5. 5.
    S. Dallaporta, “Eigenvalue variance bounds for covariance matrices,” Markov Process. Related Fields, 21(1), 145–175 (2015).MathSciNetzbMATHGoogle Scholar
  6. 6.
    P. Diaconis and M. Shahshahani, “On the eigenvalues of random matrices,” J. Appl. Probab., Studies in Applied Probability, 31A, 49–62 (1994).Google Scholar
  7. 7.
    S. Ghosh, “Determinantal processes and completeness of random exponentials: the critical case,” Probab. Theory Related Fields, 163(3-4), 643–665 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    F. Götze, A. A. Naumov, and A. N. Tikhomirov, “Local semicircle law under moment conditions: Stieltjes transform, rigidity and delocalization,” Teor. Veroyatn. Primen., 62(1), 72–103 (2017).CrossRefzbMATHGoogle Scholar
  9. 9.
    F. Hiai and D. Petz, “A large deviation theorem for the empirical eigenvalue distribution of random unitary matrices,” Ann. Inst. H. Poincar´e Probab. Statist., 36(1), 71–85 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    J. B. Hough, M. Krishnapur, Y. Peres, and B. Virág, “Determinantal processes and independence,” Probab. Surv., 3, 206–229 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    A. Kolmogoroff, “¨Uber das Gesetz des iterierten Logarithmus,” Math. Ann., 101(1), 126–135 (1929).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    E. S. Meckes and M. W. Meckes, “Spectral measures of powers of random matrices,” Electron. Commun. Probab., 18, No. 78, 13 (2013).MathSciNetzbMATHGoogle Scholar
  13. 13.
    E. S. Meckes and M.W. Meckes, “A rate of convergence for the circular law for the complex Ginibre ensemble,” Ann. Fac. Sci. Toulouse Math. (6), 24(1), 93–117 (2015).Google Scholar
  14. 14.
    E. S. Meckes and M.W. Meckes, “Self-similarity in the circular unitary ensemble,” Discrete Anal., Paper No. 9, 15 pages (2016).Google Scholar
  15. 15.
    M. L. Mehta, Random Matrices, 3rd ed., of Pure and Applied Mathematics, 142, Elsevier/Academic Press, Amsterdam (2004).Google Scholar
  16. 16.
    M. Talagrand, Upper and Lower Bounds for Stochastic Processes. Modern Methods and Classical Problems, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, 60, Springer, Heidelberg (2014).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Case Western Reserve UniversityClevelandUSA

Personalised recommendations