Journal of Mathematical Sciences

, Volume 238, Issue 4, pp 390–405 | Cite as

Duality and Free Measures in Vector Spaces, the Spectral Theory of Actions of Non-Locally Compact Groups

  • A. M. VershikEmail author

The paper presents a general duality theory for vector measure spaces taking its origin in author’s papers written in the 1960s. The main result establishes a direct correspondence between the geometry of a measure in a vector space and properties of the space of measurable linear functionals on this space regarded as closed subspaces of an abstract space of measurable functions. An example of useful new features of this theory is the notion of a free measure and its applications.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Albeverio, B. K. Driver, M. Gordina, and A. Vershik, “Equivalence of the Brownian and energy representations,” Zap. Nauchn. Semin. POMI, 441, 17–44 (2015).MathSciNetzbMATHGoogle Scholar
  2. 2.
    S. Albeverio, R. Hoegh-Krohn, D. Testard, and A. Vershik, “Factorial representations of path groups,” J. Funct. Anal., 51, 115–131 (1983).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    N. K. Bary, Trigonometric Series, The Macmillan Co., New York (1964).zbMATHGoogle Scholar
  4. 4.
    A. Connes, J. Feldman, and B. Weiss, “An amenable equivalence relation is generated by single transformation,” Ergodic Theory Dynam. Systems, 1, 431–450 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    L. N. Dovbysh and V. N. Sudakov, “On the Gram–de Finetti matrices,” Zap. Nauchn. Semin. LOMI, 119, 77–86 (1982).MathSciNetzbMATHGoogle Scholar
  6. 6.
    I. M. Gelfand, M. I. Graev, and A. M. Vershik, “Representations of the group of functions taking values in a compact Lie group,” Compos. Math., 42, 217–243 (1980).MathSciNetzbMATHGoogle Scholar
  7. 7.
    I. M. Gelfand, M. I. Graev, and A. M. Vershik, “Models of representations of current groups,” in: Representations of Lie groups and Lie algebras (Budapest, 1971), Akad. Kiado, Budapest (1985), pp. 121–179.Google Scholar
  8. 8.
    I. M. Gelfand, M. I. Graev, and N. Ya. Vilenkin, Generalized Functions, Vol. 5: Integral Geometry and Representation Theory, Amer. Math. Soc. (1966).Google Scholar
  9. 9.
    E. Glasner, B. Tsirelson, and B. Weiss, “The automorphism group of the Gaussian measure cannot act pointwise,” Israel J. Math., 148, 305–329 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    G. W. Mackey, “Point realization of transformation groups,” Illinois J. Math., 6, 327–335 (1962).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    V. A. Rokhlin, “On the fundamental ideas of measure theory,” Mat. Sb., 25(67), 107–150 (1949).MathSciNetGoogle Scholar
  12. 12.
    G. E. Shilov and Fan Dyk Tin, Integral, Measure, and Derivative on Linear Spaces [in Russian], Nauka, Moscow (1967).Google Scholar
  13. 13.
    A. V. Skorokhod, Integration in Hilbert Space. Springer-Verlag, Berlin–Heidelberg (1974).CrossRefzbMATHGoogle Scholar
  14. 14.
    V. N. Sudakov, “Geometric problems of the theory of infinite-dimensional probability distributions,” Proc. Steklov Inst. Math., 141, 1–178 (1979).MathSciNetGoogle Scholar
  15. 15.
    S. Thomas, “A descriptive view of unitary group representations,” J. Europ. Math. Soc., 017.7, 1761–1787 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    A. M. Vershik, “A measurable realization of continuous groups of automorphisms of a unitary ring,” Izv. Akad. Nauk SSSR, Ser. Mat., 29, 127–136 (1965).MathSciNetGoogle Scholar
  17. 17.
    A. M. Vershik, “Duality in the measure theory in linear spaces,” in: International Congress of Mathematicians, Abstracts, Sec. 5, Moscow (1966), p. 39.Google Scholar
  18. 18.
    A. M. Vershik, “Duality in the theory of measure in linear spaces,” Sov. Math. Dokl., 7, 1210–1214 (1967).zbMATHGoogle Scholar
  19. 19.
    A. M. Vershik, “The axiomatics of measure theory in linear spaces,” Sov. Math. Dokl., 9, 68–72 (1968).zbMATHGoogle Scholar
  20. 20.
    A. M. Vershik, “Measurable realizations of automorphism groups and integral representations of positive operators,” Sib. Mat. Zh., 28, 36–43 (1987).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    A. M. Vershik, “Random and universal metric spaces,” in: Fundamental Mathematics Today, S. K. Lando and O. K. Sheinman (eds.), Independent Univ. Moscow, (2003), pp. 54–88.Google Scholar
  22. 22.
    A. M. Vershik, “The theory of filtrations of subalgebras, standardness, and independence,” Russian Math. Surveys, 72, 257–333 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    A. M. Vershik and V. N. Sudakov, “Probability measures in infinite-dimensional spaces,” Zap. Nauchn. Semin. LOMI, 12, 1–28 (1971).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.St. Petersburg Department of the Steklov Mathematical InstituteSt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Institute for Information Transmission ProblemsMoscowRussia

Personalised recommendations