Journal of Mathematical Sciences

, Volume 238, Issue 4, pp 346–347 | Cite as

A Few Recollections

  • H. V. WeizsäckerEmail author


  1. 1.
    G. Birkhoff, “Tres observaciones sobre el algebra lineal,” Univ. Nac. Tucumán Rev. Ser. A, 5, 147–151 (1946).Google Scholar
  2. 2.
    W. Feller, An Introduction to Probability Theory and its Applications, 2nd. ed., 2, John Wiley & Sons, New York (1971).zbMATHGoogle Scholar
  3. 3.
    R. D. Mauldin, D. Preiss, and H. V. Weizsäcker, “Orthogonal transition kernels,” Ann. Prob., 11, 970–988 (1983).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Mathematisches Forschungsinstitut Oberwolfach, Book of abstracts, 59, in:, 113–155 (1983).Google Scholar
  5. 5.
    V. A. Rokhlin. “On the fundamental ideas of measure theory,” Mat. Sbornik, 25, 107–150 (1949); Amer. Math. Soc. Trans., 71 (1952).Google Scholar
  6. 6.
    J. V. Romanovsky and V. N. Sudakov, “On the existence of independent partition,” Proc. Steklov Inst. Math., 79, 1–7 (1965).MathSciNetGoogle Scholar
  7. 7.
    V. N. Sudakov, “On a representation of doubly stochastic integral operators by disjoint isomorphisms,” Zap. Nauchn. Sem. LOMI, 19, 196–208 (1970).Google Scholar
  8. 8.
    V. N. Sudakov, “Typical distributions of linear functionals on the spaces of high dimension,” Soviet Math. Dokl., 19, 1578–1582 (1978).zbMATHGoogle Scholar
  9. 9.
    H. v. Weizsäcker, “Sudakov’s typical marginals, random linear functionals and a conditional central limit theorem,” Probab. Theory Relat. Fields, 107, 313–324 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    H. V. Weizsäcker, “Can one drop L 1-boundedness in Komlos’ Subsequence Theorem?” Amer. Math. Monthly, 111, 900–903 (2004).MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of KaiserslauternKaiserslauternGermany

Personalised recommendations