Advertisement

Journal of Mathematical Sciences

, Volume 238, Issue 1, pp 1–21 | Cite as

Boundary-Value Problems with Birkhoff Regular but not Strongly Regular Conditions for a Second-Order Differential Operator

  • Ya. О. Baranetskij
  • P. І. Kalenyuk
Article
  • 22 Downloads

We study the self-adjoint problems whose operators split in the invariant subspaces induced by the involution operator Iy(x) = y(1− x). We construct nonself-adjoint perturbations of these problems that are Birkhoff regular but not strongly regular and, for some values of the coefficients of the boundary conditions transform into nonspectral problems in Dunford’s sense. We study the spectral properties of operators corresponding to these perturbations and, in particular, determine the eigenvalues and root functions and analyze the completeness and basis property of the system of root functions. We find the families of boundary conditions that generate essentially nonself-adjoint problems and contain the nonlocal Samarskii–Ionkin conditions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Bassotti, “Linear operators that are T -invariant with respect to a group of homeomorphisms,” Usp. Mat. Nauk, 43, No. 1, 57–85 (1988); English translation: Russ. Math. Surv., 43, No. 1, 67–101 (1988);  https://doi.org/10.1070/RM1988v043n01ABEH001538.
  2. 2.
    I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonself-Adjoint Operators in Hilbert Space [in Russian], Nauka, Moscow (1965); English translation: American Mathematical Society, Providence, RI (1969).Google Scholar
  3. 3.
    N. Dunford and J. T. Schwartz, Linear Operators. Part III. Spectral Operators, Wiley Interscience, New York (1971).Google Scholar
  4. 4.
    A. A. Dezin, “Differential operator equations: A method of model operators in the theory of boundary value problems,” Tr. Mat. Inst. Steklova, Akad. Nauk SSSR, 229, 3–175 (2000); http://mi.mathnet.ru/book242; English translation: Proc. Steklov Inst. Math., 229, 1–161 (2000).
  5. 5.
    V. A. Il'in, “Existence of a reduced system of eigen- and associated functions for a nonself-adjoint ordinary differential operator,” Tr. Mat. Inst. Steklova Akad. Nauk SSSR, 142, 148–155 (1976); English translation: Proc. Steklov Inst. Math., 142, 157–164 (1979).Google Scholar
  6. 6.
    V. A. Il'in and L. V. Kritskov, “Properties of spectral expansions corresponding to nonself-adjoint differential operators,” Itogi Nauki Tekh., Ser. Sovrem. Mat. Ee Prilozh. Temat. Obzor. Funkts. Anal., 96, 5–105 (2006); English translation: J. Math. Sci., 116, No. 5, 3489–3550 (2003);  https://doi.org/10.1023/A:1024180807502.
  7. 7.
    N. I. Ionkin, “Solution of one boundary-value problem of the theory of heat conduction with nonclassical boundary conditions,” Differents. Uravn., 13, No. 2, 294–304 (1977).Google Scholar
  8. 8.
    P. I. Kalenyuk, Ya. E. Baranetskii, and Z. N. Nitrebich, Generalized Method of Separation of Variables [in Russian], Naukova Dumka, Kiev (1993).Google Scholar
  9. 9.
    G. M. Kesel’man, “On the unconditional convergence of expansions in terms of eigenfunctions of some differential operators,” Izv. Vyssh. Uchebn. Zaved. Mat., 39, No. 2, 82–93 (1964).Google Scholar
  10. 10.
    A. S. Makin, “On a nonlocal perturbation of a periodic eigenvalue problem,” Differents. Uravn., 42, No. 4, 560–562 (2006); English translation: Differ. Equat., 42, No. 4, 599–602 (2006).Google Scholar
  11. 11.
    V. P. Mikhailov, “On Riesz bases in L 2 (0,1),” Dokl. Akad. Nauk SSSR, 144, No. 5, 981–984 (1962).Google Scholar
  12. 12.
    A. Yu. Mokin, “On a family of initial-boundary value problems for the heat equation,” Differents. Uravn., 45, No. 1, 123–137 (2009); English translation: Differ. Equat., 45, No. 1, 126–141 (2009).Google Scholar
  13. 13.
    L. A. Muravei, “Riesz bases in L 2 (-1,1),” Tr. Mat. Inst. Steklova, Akad. Nauk SSSR, 91, 113–131 (1967); http://mi.mathnet.ru/book1220; English translation: Proc. Steklov Inst. Math., 91, 117–136 (1969).
  14. 14.
    M. A. Naimark, Linear Differential Operators [in Russian], Nauka, Moscow (1969); English translation: Harrap, London (1968).Google Scholar
  15. 15.
    A. A. Shkalikov, “On the basis problem of the eigenfunctions of an ordinary differential operator,” Usp. Mat. Nauk, 34, No. 5, 235–236 (1979); English translation: Russ. Math. Surv., 34, No. 5, 249–250 (1979).Google Scholar
  16. 16.
    G. D. Birkhoff, “Boundary value and expansion problems of ordinary linear differential equations,” Trans. Amer. Math. Soc., 9, No. 4, 373–395 (1908).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    G. D. Birkhoff, “On the asymptotic character of the solutions of certain linear differential equations containing a parameter,” Trans. Amer. Math. Soc., 9, No. 2, 219–231 (1908).MathSciNetCrossRefGoogle Scholar
  18. 18.
    P. Lang and J. Locker, “Spectral theory of two-point differential operators determined by -D 2 . I. Spectral properties,” J. Math. Anal. Appl., 141, No. 2, 538–558 (1989).Google Scholar
  19. 19.
    P. Lang and J. Locker, “Spectral theory of two-point differential operators determined by -D 2 . II. Analysis of cases,” J. Math. Anal. Appl., 146, No. 1, 148–191 (1990).Google Scholar
  20. 20.
    J. Locker, “The spectral theory of second order two-point differential operators: I. A priori estimates for the eigenvalues and completeness,” Proc. Roy. Soc. Edinburgh. Sect. A , 121, No. 3-4, 279–301 (1992).Google Scholar
  21. 21.
    J. Locker, “The spectral theory of second order two-point differential operators: II. Asymptotic expansions and the characteristic determinant,” J. Differ. Equat., 114, No. 1, 272–287 (1994).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    J. Locker, “The spectral theory of second order two-point differential operators: III. The eigenvalues and their asymptotic formulas,” Rocky Mountain J. Math., 26, No. 2, 679–706 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    J. Locker, “The spectral theory of second order two-point differential operators: IV. The associated projections and the subspace S (L),” Rocky Mountain J. Math., 26, No. 4, 1473–1498 (1996).Google Scholar
  24. 24.
    M. H. Stone, “A comparison of the series of Fourier and Birkhoff,” Trans. Amer. Math. Soc., 28, No. 4, 695–761 (1926).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    M. H. Stone, “Irregular differential systems of order two and the related expansion problems,” Trans. Amer. Math. Soc., 29, No. 1, 23–53 (1927).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    J. D. Tamarkin, “Sur quelques points de la théorie des équations différentielles linéaires ordinaires et sur la généralisation de la série de Fourier,” Rend. Circ. Matem. Palermo, 34, 345–382 (1912).CrossRefGoogle Scholar
  27. 27.
    J. Tamarkin, “Some general problems of the theory of ordinary linear differential equations and expansion of an arbitrary function in series of fundamental functions,” Math. Zeit., 27, No. 1, 1–54 (1928).MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    P. W. Walker, “A nonspectral Birkhoff-regular differential operator,” Proc. Amer. Math. Soc., 66, No. 1, 187–188 (1977).MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ya. О. Baranetskij
    • 1
  • P. І. Kalenyuk
    • 1
    • 2
  1. 1.Institute of Applied Mathematics and Fundamental Sciences“L’vivs’ka Politekhnika” National UniversityLvivUkraine
  2. 2.University of RzeszówRzeszówPoland

Personalised recommendations