Bayesian Variance-Stabilizing Kernel Density Estimation Using Conjugate Prior
Article
First Online:
Kernel-type density or regression estimator does not produce a constant estimator variance over the domain. To correct this problem, K. Nishida and Y. Kanazawa (2011, 2015) proposed a variance-stabilizing (VS) local variable bandwidth for kernel regression estimators. K. Nishida (2017) proposed another strategy to construct VS local linear regression estimator using a convex combination of three skewing estimators proposed by Choi and Hall (1998). In this study, we show that variance stabilization can be accomplished by a Bayesian approach in the case of kernel density estimator using conjugate prior.
Preview
Unable to display preview. Download preview PDF.
References
- 1.M.J. Brewer, “A modelling approach for bandwidth selection in kernel density estimation,” in: Proceedings in Computational Statistics 13th Symposium, COMPSTAT, Bristol, UK (1998), pp. 203–208.Google Scholar
- 2.M.J. Brewer, “A Bayesian model for local smoothing in kernel density estimation,” Stat. Comput., 10, 299–309 (2000).CrossRefGoogle Scholar
- 3.N. Belaid, S. Adjabi, N. Zougab, and C.C. Kokonendji, “Bayesian bandwidth selection in discrete multivariate associated kernel estimators for probability mass functions,” J. Korean Stat. Soc., 45, 557–567 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
- 4.S.X. Chen, “Probability density function estimation using gamma kernels,” Ann. Inst. Stat. Math., 52, 471–480 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
- 5.E. Choi and P. Hall, “On bias reduction in local linear smoothing,” Biometrika, 85, No. 2, 333–345 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
- 6.L. Djerroud, N. Zougab, and S. Adjabi, “Bayesian approach to bandwidth selection for multivariate count regression function estimation by associated discrete kernel,” J. Stat. Theor. Pract., 11, 553–572 (2017).MathSciNetCrossRefGoogle Scholar
- 7.A. Gangopadhyay and K. Cheung, “Bayesian approach to the choice of smoothing parameter in kernel density estimation,” J. Nonparametr. Stat., 14, 655–664 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
- 8.K.B. Kulasekera and W.J. Padgett, “Bayes bandwidth selection in kernel density estimation with censored data,” J. Nonparametr. Stat., 18, No. 2, 129–143 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
- 9.M.S. Lima and G.S. Atuncar, “A Bayesian method to estimate the optimal bandwidth for multivariate kernel estimator,” J. Nonparametr. Stat., 23, No. 1, 137–148 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
- 10.K. Nishida, “Skewing methods for variance-stabilizing local linear regression estimation,” arXiv:1704.04356 (2017).Google Scholar
- 11.K. Nishida and Y. Kanazawa, “Introduction to the variance-stabilizing bandwidth for the Nadaraya–Watson regression estimator,” Bull. Inform. Cybern., 43, 53–66 (2011).MathSciNetzbMATHGoogle Scholar
- 12.K. Nishida and Y. Kanazawa, “On variance-stabilizing multivariate non parametric regression estimation,” Commun. Stat. Theor. Methods, 44, No. 10, 2151–2175 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
- 13.O. Scaillet, “Density estimation using inverse and reciprocal inverse gaussian kernels,” J. Nonparametr. Stat., 16, 217–266 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
- 14.H.L. Shang, “Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density,” Comput. Stat. Data Anal., 67, 185–198 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
- 15.X. Zhang, R.D. Brooks, and M.L. King, “A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation,” J. Econom., 153, 21–32 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
- 16.X. Zhang, M.L. King, and R.J. Hyndman, “A Bayesian approach to bandwidth selection for multivariate kernel density estimation,” Comput. Stat. Data Anal., 50, No. 11, 3009–3031 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
- 17.X. Zhang, M.L. King, and H.L. Shang, “A sampling algorithm for bandwidth estimation in a nonparametric regression model with a flexible error density,” Comput. Stat. Data Anal., 78, 218–234 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
- 18.Qi. Zheng, K.B. Kulasekera, and C. Gallagher, “Local adaptive smoothing in kernel regression estimation,” Stat. Probab. Lett., 80, 540–547 (2010).Google Scholar
- 19.Y. Ziane, S. Adjabi, and N. Zougab, “Adaptive Bayesian bandwidth selection in asymmetric kernel density estimation for nonnegative heavy-tailed data,” J. Appl. Stat., 42, No. 8, 1645–1658 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
- 20.N. Zougab, S. Adjabi, and C.C. Kokonendji, “Binomial kernel and Bayes local bandwidth in discrete function estimation,” J. Nonparametr. Stat., 24, No. 3, 783–795 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
- 21.N. Zougab, S. Adjabi, and C.C. Kokonendji, “Adaptive smoothing in associated kernel discrete functions estimation using Bayesian approach,” J. Stat. Comput. Simul., 83, 2219–2231 (2013).MathSciNetCrossRefGoogle Scholar
- 22.N. Zougab, S. Adjabi, and C.C. Kokonendji, “A Bayesian approach to bandwidth selection in univariate associate kernel estimation,” J. Stat. Theor. Pract., 7, 8–23 (2013).MathSciNetCrossRefGoogle Scholar
- 23.N. Zougab, S. Adjabi, and C.C. Kokonendji, “Bayesian approach in nonparametric count regression with binomial kernel,” Commun. Stat. Sim. Comput., 43, 1052–1063 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2019