Advertisement

Journal of Mathematical Sciences

, Volume 237, Issue 4, pp 563–568 | Cite as

Nonuniqueness of the Solution to the Interior Neumann–Gellerstedt Problem for the Lavrent’ev–Bitsadze Equation

  • E. I. MoiseevEmail author
  • T. E. Moiseev
  • A. A. Kholomeeva
Article
  • 9 Downloads

We prove that the homogeneous Neumann–Gellerstedt problem with data on internal characteristics has a nontrivial solution under the Frankl matching condition on the line where the equation changes type.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Bitsadze, Some Classes of Partial Differential Equations, Gordon & Breach, New York etc. (1988).zbMATHGoogle Scholar
  2. 2.
    M. M. Smirnov, Equations of Mixed Type [in Russian], Moscow (1985).Google Scholar
  3. 3.
    T. E. Moiseev, “Gellerstedt problem with a generalized Frankl matching condition on the type change line with data on external characteristics,” Differ. Equ. 52, No. 2, 240–247 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    T. E. Moiseev, “Gellerstedt problem with nonclassical matching conditions for the solution gradient on the type change line with data on internal characteristics,” Differ. Equ. 52, No. 8, 1023–1029 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    T. E. Moiseev, “On the nonuniqueness of the solution of a mixed boundary value problem for the Laplace equation” [in Russian], Differ. Uravn., 44, No. 5, 712–714 (2008); English transl.: Differ. Equ. 44, No. 5, 734–736 (2008).Google Scholar
  6. 6.
    E. I. Moiseev “On the basis property of a system of sines” [in Russian], Differ. Uravn. 23, No. 1, 177–179 (1987).Google Scholar
  7. 7.
    E. I. Moiseev and N. O. Taranov, “Solution of a Gellerstedt problem for the Lavrent’ev–Bitsadze equation,” Differ. Equ. 45, No. 4, 558–563 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    E. I. Moiseev and N. O. Taranov, “Integral representation of the solution of a Gellerstedt problem,” Differ. Equ. 45, No. 11, 1588–1594 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    E. I. Moiseev, P. V. Nefedov, and A. A. Kholomeeva, “Analog of the Gellerstedt problem for the Lavrent’ev–Bitsadze equation in a 3D domain,” Differ. Equ. 51, No. 6, 827–829 (2015).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • E. I. Moiseev
    • 1
    Email author
  • T. E. Moiseev
    • 1
  • A. A. Kholomeeva
    • 1
  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations